Title | Quantum simulation of real-space dynamics |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Childs, AM, Leng, J, Li, T, Liu, J-P, Zhang, C |
Journal | Quantum |
Volume | 6 |
Pages | 860 |
Date Published | 11/8/2022 |
Abstract | Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d-dimensional Schrödinger equation with η particles can be simulated with gate complexity O~(ηdFpoly(log(g′/ϵ))), where ϵ is the discretization error, g′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g′ from poly(g′/ϵ) to poly(log(g′/ϵ)) and polynomially improves the dependence on T and d, while maintaining best known performance with respect to η. For the case of Coulomb interactions, we give an algorithm using η3(d+η)Tpoly(log(ηdTg′/(Δϵ)))/Δ one- and two-qubit gates, and another using η3(4d)d/2Tpoly(log(ηdTg′/(Δϵ)))/Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization. |
URL | https://doi.org/10.22331%2Fq-2022-11-17-860 |
DOI | 10.22331/q-2022-11-17-860 |