Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory

TitleQuantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory
Publication TypeJournal Article
Year of Publication2023
AuthorsMueller, N, Carolan, J, Connelly, A, Davoudi, Z, Dumitrescu, EF, Yeter-Aydeniz, K
Date Published10/6/2023
Abstract

Strongly-coupled gauge theories far from equilibrium may exhibit unique features that could illuminate the physics of the early universe and of hadron and ion colliders. Studying real-time phenomena has proven challenging with classical-simulation methods, but is a natural application of quantum simulation. To demonstrate this prospect, we quantum compute non-equal time correlation functions and perform entanglement tomography of non-equilibrium states of a simple lattice gauge theory, the Schwinger model, using a trapped-ion quantum computer by IonQ Inc. As an ideal target for near-term devices, a recently-predicted [Zache et al., Phys. Rev. Lett. 122, 050403 (2019)] dynamical quantum phase transition in this model is studied by preparing, quenching, and tracking the subsequent non-equilibrium dynamics in three ways: i) overlap echos signaling dynamical transitions, ii) non-equal time correlation functions with an underlying topological nature, and iii) the entanglement structure of non-equilibrium states, including entanglement Hamiltonians. These results constitute the first observation of a dynamical quantum phase transition in a lattice gauge theory on a quantum computer, and are a first step toward investigating topological phenomena in nuclear and high-energy physics using quantum technologies.

URLhttps://arxiv.org/abs/2210.03089