Parallel Device-Independent Quantum Key Distribution

TitleParallel Device-Independent Quantum Key Distribution
Publication TypeJournal Article
Year of Publication2020
AuthorsJain, R, Miller, C, Shi, Y
JournalIEEE Transactions on Information Theory
Date Published09/2020

A prominent application of quantum cryptography is the distribution of cryptographic keys that are provably secure. Such security proofs were extended by Vazirani and Vidick ( Physical Review Letters , 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of N multiplayer games, where N is the security parameter. In this work, we prove the security of a protocol where all games are executed in parallel. Besides decreasing the number of time-steps necessary for key generation, this result reduces the security requirements for DI-QKD by allowing arbitrary information leakage of each user’s inputs within his or her lab. To the best of our knowledge, this is the first parallel security proof for a fully device-independent QKD protocol. Our protocol tolerates a constant level of device imprecision and achieves a linear key rate.