Optimal robust self-testing by binary nonlocal XOR games

TitleOptimal robust self-testing by binary nonlocal XOR games
Publication TypeBook Chapter
Year of Publication2013
AuthorsMiller, C, Shi, Y
Book Title8th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2013
Volume22
Pages254–262
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Keywordsnonlocal games, quantum cryptography, Random number generation, Self-testing
Abstract

Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well as the effect of the associated measuring devices based only on the statistics of the measurement outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We devise a general scheme for proving optimal robust self-testing properties for tests based on nonlocal binary XOR games. We offer some simplified proofs of known results on self-testing, and also prove some new results.

DOI10.4230/LIPIcs.TQC.2013.254