Title | Fast optimization algorithms and the cosmological constant |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | Bao, N, Bousso, R, Jordan, SP, Lackey, B |
Journal | Physical Review D |
Volume | 96 |
Issue | 10 |
Pages | 103512 |
Date Published | 2017/11/13 |
Abstract | Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of an NP-hard problem. The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10−120 in a randomly generated 109 -dimensional ADK landscape. |
URL | https://arxiv.org/abs/1706.08503 |
DOI | 10.1103/PhysRevD.96.103512 |