Professor and Co-Director

3359 Atlantic Building

(301) 405-2329

Andrew Childs, co-director of QuICS, is a professor in the Department of Computer Science and the Institute for Advanced Computer Studies (UMIACS). He is also the director of the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation.

Childs's research interests are in the theory of quantum information processing, especially quantum algorithms. He has explored the computational power of quantum walk, providing an example of exponential speedup, demonstrating computational universality, and constructing algorithms for problems including search and formula evaluation. Childs has also developed fast quantum algorithms for simulating Hamiltonian dynamics. His other areas of interest include quantum query complexity and quantum algorithms for algebraic problems.

Before coming to UMD, Childs was a DuBridge Postdoctoral Scholar at Caltech from 2004-2007 and a faculty member in Combinatorics & Optimization and the Institute for Quantum Computing at the University of Waterloo from 2007-2014. Childs received his doctorate in physics from MIT in 2004.

“Complexity of the XY antiferromagnet at fixed magnetization”, Quantum Information and Computation, vol. 16, no. 1-2, pp. 1-18, 2016. ,

“Momentum switches”, Quantum Information and Computation, vol. 15, no. 7-8, pp. 601-621, 2015. ,

“Simulating Hamiltonian dynamics with a truncated Taylor series”, Physical Review Letters, vol. 114, no. 9, p. 090502, 2015. ,

“Hamiltonian simulation with nearly optimal dependence on all parameters”, Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809, 2015. ,

“Spatial search by continuous-time quantum walks on crystal lattices”, Physical Review A, vol. 89, no. 5, 2014. ,

“The computational power of matchgates and the XY interaction on arbitrary graphs”, Quantum Information and Computation, vol. 14, no. 11-12, pp. 901-916, 2014. ,

“The Bose-Hubbard model is QMA-complete”, Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), vol. 8572, pp. 308-319, 2014. ,

“Exponential improvement in precision for simulating sparse Hamiltonians”, Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), pp. 283-292, 2014. ,

“Quantum computation of discrete logarithms in semigroups”, Journal of Mathematical Cryptology, vol. 8, no. 4, 2014. ,

“Constructing elliptic curve isogenies in quantum subexponential time”, Journal of Mathematical Cryptology, vol. 8, no. 1, pp. 1 - 29, 2014. ,

“A framework for bounding nonlocality of state discrimination”, Communications in Mathematical Physics, vol. 323, no. 3, pp. 1121 - 1153, 2013. ,

“Interpolatability distinguishes LOCC from separable von Neumann measurements”, Journal of Mathematical Physics, vol. 54, no. 11, p. 112204, 2013. ,

“Easy and hard functions for the Boolean hidden shift problem”, Proceedings of TQC 2013, vol. 22, pp. 50-79, 2013. ,

“Universal computation by multi-particle quantum walk”, Science, vol. 339, no. 6121, pp. 791 - 794, 2013. ,

“Product Formulas for Exponentials of Commutators”, Journal of Mathematical Physics, vol. 54, no. 6, p. 062202, 2013. ,

“Levinson's theorem for graphs II”, Journal of Mathematical Physics, vol. 53, no. 10, p. 102207, 2012. ,

“Hamiltonian Simulation Using Linear Combinations of Unitary Operations”, Quantum Information and Computation, vol. 12, no. 11-12, pp. 901-924, 2012. ,

“The quantum query complexity of read-many formulas”, Lecture Notes in Computer Science, vol. 7501, pp. 337-348, 2012. ,

“Levinson's theorem for graphs”, Journal of Mathematical Physics, vol. 52, no. 8, p. 082102, 2011. ,