Victor Albert

Advanced Topics in Theory of Computing; Classical and Quantum Codes (CMSC858Q/PHYS889C, Spring 2022)

The course will cover topics in classical and quantum coding theory from the unified perspective of protecting information in classical communication and supporting fault-tolerant computations in quantum computers. Topics in classical codes include: Reed-Solomon codes, codes on algebraic curves, Reed-Muller codes, polar codes, rank metric codes. Topics in quantum codes include: stabilizer codes, CSS codes, GKP codes, polynomial codes, toric code. 

Advanced Topics in Theory of Computing; Quantum Error Correction and Fault-Tolerance (CMSC858G, Fall 2021)

The aim of the course is to develop the theory of how to protect quantum computers from noise through active control, measurement, and feedback of quantum systems. Topics will include quantum coding theory, stabilizer codes, continuous variable codes, fault-tolerance, resource theories, magic states, threshold theorems, topological codes, decoding algorithms, noisy quantum circuits, and related aspects of quantum many-body physics.