A Separation Between QNC^0 and AC^0

Adam Bene Watts, Robin Kothari, Luke Schaeffer, Avishay Tal

January 30, 2019
Coauthors

Adam Bene Watts

Robin Kothari

Avishay Tal
Section 1

Introduction
Quantum Advantage

Broad Goal
Prove quantum computers are more powerful than classical computers.
Quantum Advantage

Broad Goal

Prove *unconditionally* that quantum computers are more powerful than classical computers.
Quantum Advantage

Broad Goal

Prove *unconditionally* that quantum computers are more powerful than classical computers.
Quantum Advantage

Broad Goal

Prove \textit{unconditionally} that quantum computers are more powerful than classical computers.

Previous work:

- Shor’s algorithm.
 - What if factoring is easy classically too?
Introduction

Quantum Advantage

Broad Goal

Prove *unconditionally* that quantum computers are more powerful than classical computers.

Previous work:

- Shor’s algorithm.
 - What if factoring is easy classically too?
- Boson Sampling. Several hardness assumptions.
Quantum Advantage

Broad Goal

Prove \textit{unconditionally} that quantum computers are more powerful than classical computers.

Previous work:

- Shor’s algorithm.
 - What if factoring is easy classically too?
- Boson Sampling. Several hardness assumptions.
- Grover’s algorithm.
 - $O(\sqrt{N})$ oracle calls. How do you implement the oracle?
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.

Features:

✓ Completely unconditional!
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.

Features:

- Completely unconditional!
- Fair comparison
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.

Features:
- Completely unconditional!
- Fair comparison
- Simple quantum circuit
 - A variant (2DHLF) uses only local gates on a 2D grid
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.

Features:

- Completely unconditional!
- Fair comparison
- Simple quantum circuit
 - A variant (2DHLF) uses only local gates on a 2D grid
- Doesn’t use any complexity theory
Theorem (Bravyi, Gosset, König)

The hidden linear function (HLF) problem can be solved by constant depth quantum circuits but not constant depth classical circuits.

Features:

- Completely unconditional!
- Fair comparison
- Simple quantum circuit
 - A variant (2DHLF) uses only local gates on a 2D grid
- Doesn’t use any complexity theory

Open Problem

Can we improve this result using ideas from circuit complexity?
“The class of problems solved by constant depth **classical/quantum** circuits (of poly size) with **constant/unbounded** fan-in gates.”

<table>
<thead>
<tr>
<th></th>
<th>Constant Fan-In</th>
<th>Unbounded Fan-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>\mathbb{NC}^0</td>
<td>\mathbb{AC}^0</td>
</tr>
<tr>
<td>Quantum</td>
<td>\mathbb{QNC}^0</td>
<td>\mathbb{QAC}^0?</td>
</tr>
</tbody>
</table>
“The class of problems solved by constant depth classical/quantum circuits (of poly size) with constant/unbounded fan-in gates.”

<table>
<thead>
<tr>
<th></th>
<th>Constant Fan-In</th>
<th>Unbounded Fan-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>NC0</td>
<td>AC0</td>
</tr>
<tr>
<td>Quantum</td>
<td>QNC0</td>
<td>QAC0?</td>
</tr>
</tbody>
</table>

Technicality

Actually, these classes (NC0, QNC0, AC0) are for decision problems with 1 bit of output. This talk is about relation problems with multiple bits of output and multiple answers.
“The class of problems solved by constant depth classical/quantum circuits (of poly size) with constant/unbounded fan-in gates.”

<table>
<thead>
<tr>
<th></th>
<th>Constant Fan-In</th>
<th>Unbounded Fan-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>NC(^0)</td>
<td>AC(^0)</td>
</tr>
<tr>
<td>Quantum</td>
<td>QNC(^0)</td>
<td>QAC(^0)?</td>
</tr>
</tbody>
</table>

Technicality

Actually, these classes (NC\(^0\), QNC\(^0\), AC\(^0\)) are for decision problems with 1 bit of output. This talk is about relation problems with multiple bits of output and multiple answers. And this is necessary!
“The class of problems solved by constant depth classical/quantum circuits (of poly size) with constant/unbounded fan-in gates.”

<table>
<thead>
<tr>
<th></th>
<th>Constant Fan-In</th>
<th>Unbounded Fan-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>NC0</td>
<td>AC0</td>
</tr>
<tr>
<td>Quantum</td>
<td>QNC0</td>
<td>QAC0?</td>
</tr>
</tbody>
</table>

Theorem (BGK Result)

The Hidden Linear Function Problem (HLF) is in QNC0 but not NC0.

Theorem (Our Result)

The Relaxed Parity Halving Problem (RPHP) is in QNC0 but not AC0.

January 30, 2019 6 / 51
“The class of problems solved by constant depth classical/quantum circuits (of poly size) with constant/unbounded fan-in gates.”

<table>
<thead>
<tr>
<th></th>
<th>Constant Fan-In</th>
<th>Unbounded Fan-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>NC0</td>
<td>AC0</td>
</tr>
<tr>
<td>Quantum</td>
<td>QNC0</td>
<td>QAC0?</td>
</tr>
</tbody>
</table>

Theorem (BGK Result)

The Hidden Linear Function Problem (HLF) is in QNC0 but not NC0.

Theorem (Our Result)

*The Relaxed Parity Halving Problem (RPHP) is in QNC0 but not AC0.***
Main Result

Extensions
Outline

Main Result

- Parity Halving Problem (separate $\text{QNC}^0/\text{qpoly}$ and AC^0)

- Relaxed Parity Halving Problem (separate QNC^0 and AC^0)

Extensions
Main Result

- Parity Halving Problem (separate $\text{QNC}^0/\text{qpoly}$ and AC^0)
 - Quantum circuit with advice ($\text{PHP} \in \text{QNC}^0/\text{qpoly}$)
 - Classical hardness ($\text{PHP} \notin \text{AC}^0$)

- Relaxed Parity Halving Problem (separate QNC^0 and AC^0)

Extensions
Main Result

- Parity Halving Problem (separate QNC0/qpoly and AC0)
 - Quantum circuit with advice (PHP \in QNC0/qpoly)
 - Classical hardness (PHP \notin AC0)
 - Hard as a game,
 - Hard against NC0 (via locality),
 - Hard against AC0 (via Switching Lemma).
- Relaxed Parity Halving Problem (separate QNC0 and AC0)

Extensions
Main Result

- Parity Halving Problem (separate QNC0/qpoly and AC0)
 - Quantum circuit with advice (PHP \in QNC0/qpoly)
 - Classical hardness (PHP \notin AC0)
 - Hard as a game,
 - Hard against NC0 (via locality),
 - Hard against AC0 (via Switching Lemma).

- Relaxed Parity Halving Problem (separate QNC0 and AC0)
 - Quantum algorithm (RPHP \in QNC0)
 - Classical hardness (RPHP \notin AC0)

Extensions
Main Result

- Parity Halving Problem (separate $\text{QNC}^0 / \text{qpoly}$ and AC^0)
 - Quantum circuit with advice ($\text{PHP} \in \text{QNC}^0 / \text{qpoly}$)
 - Classical hardness ($\text{PHP} \not\in \text{AC}^0$)
 - Hard as a game,
 - Hard against NC^0 (via locality),
 - Hard against AC^0 (via Switching Lemma).

- Relaxed Parity Halving Problem (separate QNC^0 and AC^0)
 - Quantum algorithm ($\text{RPHP} \in \text{QNC}^0$)
 - Classical hardness ($\text{RPHP} \not\in \text{AC}^0$)

Extensions

- Better parameters, Geometric locality, Relation to HLF
Section 2

Parity Halving Problem
Notation: For $x \in \{0, 1\}^n$ define the *Hamming weight* $|x| := \sum_i x_i$.

Parity Halving Problem

Given $x \in \{0, 1\}^n$ with even Hamming weight ($|x| \equiv 0 \pmod{2}$), output $y \in \{0, 1\}^n$ such that $|y| \equiv 1 \pmod{2}$. $|x|/2$.

Example ($n = 3$)

$000 \rightarrow 000, 011, 101, 110$ (even)

$011 \rightarrow 001, 010, 100, 111$ (odd)

$101 \rightarrow 001, 010, 100, 111$ (odd)

$110 \rightarrow 001, 010, 100, 111$ (odd)
Parity Halving

Notation: For $x \in \{0, 1\}^n$ define the Hamming weight $|x| := \sum_i x_i$.

Parity Halving Problem

Given $x \in \{0, 1\}^n$ with even Hamming weight ($|x| \equiv 0 \pmod{2}$), output $y \in \{0, 1\}^n$ such that

$$|y| \equiv \frac{1}{2} |x| \pmod{2}$$
Parity Halving

Notation: For \(x \in \{0, 1\}^n \) define the Hamming weight \(|x| := \sum_i x_i \).

Parity Halving Problem

Given \(x \in \{0, 1\}^n \) with even Hamming weight \((|x| \equiv 0 \pmod{2}) \), output \(y \in \{0, 1\}^n \) such that

\[
|y| \equiv \frac{1}{2} |x| \pmod{2}
\]

Example \((n = 3) \)

\[
\begin{align*}
000 & \rightarrow 000, 011, 101, 110 \ (even) \\
011 & \rightarrow 001, 010, 100, 111 \ (odd) \\
101 & \rightarrow 001, 010, 100, 111 \ (odd) \\
110 & \rightarrow 001, 010, 100, 111 \ (odd)
\end{align*}
\]
Parity Halving Problem

Given $x \in \{0, 1\}^n$ such that $|x| \equiv 0 \pmod{2}$, output $y \in \{0, 1\}^n$ such that

\[
|y| \equiv 0 \pmod{2}, \\
|y| \equiv 1 \pmod{2}.
\]
Parity Halving Problem

Parity Halving Game

Nonlocal n player game:

- each player gets one input bit x_j,
- responsible for one output bit y_j.

The players win if

$$|y| \equiv \frac{1}{2} |x| \pmod{2}$$
Parity Halving Problem

Parity Halving Game

Nonlocal n player game:

- each player gets one input bit x_j,
- responsible for one output bit y_j.

The players win if

$$|y| \equiv \frac{1}{2} |x| \pmod{2}$$

- Special case $n = 3$ is the GHZ game.
Parity Halving Game

Nonlocal n player game:

- each player gets one input bit x_j,
- responsible for one output bit y_j.

The players win if

$$|y| \equiv \frac{1}{2}|x| \pmod{2}$$

- Special case $n = 3$ is the GHZ game.
- General case independently discovered by Mermin (1990) and Brassard, Broadbent, Tapp (2005).
PHP: Given even parity x, find y such that $|y| \equiv \frac{1}{2} |x|$ (mod 2).

Theorem

Given the state $|\psi\rangle = \frac{1}{\sqrt{2}} (|0\cdot0\rangle + |1\cdot1\rangle)$, quantum players can always win.
Quantum Strategy

PHP: Given even parity x, find y such that $|y| \equiv \frac{1}{2} |x| \pmod{2}$.

Theorem

Given the state $|\psi\rangle = \frac{1}{\sqrt{2}} (|0\cdots0\rangle + |1\cdots1\rangle)$, *quantum players can always win.*

Proof.

Each player applies $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ to their qubit if $x_j = 1$. State is $|0\cdots0\rangle + i^{|x|} |1\cdots1\rangle$.
Quantum Strategy

PHP: Given even parity x, find y such that $|y| \equiv \frac{1}{2}|x|$ (mod 2).

Theorem

Given the state $|\psi\rangle = \frac{1}{\sqrt{2}} (|0\cdots0\rangle + |1\cdots1\rangle)$, quantum players can always win.

Proof.

Each player applies $S = \left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array} \right)$ to their qubit if $x_j = 1$. State is $|0\cdots0\rangle + i|x| |1\cdots1\rangle$.

\[|0\cdots0\rangle + |1\cdots1\rangle \]
\[|0\cdots0\rangle - |1\cdots1\rangle \]
PHP: Given even parity x, find y such that $|y| \equiv \frac{1}{2}|x|$ (mod 2).

Theorem

Given the state $\left| \bigotimes \right> = \frac{1}{\sqrt{2}} \left(|0\cdots0\rangle + |1\cdots1\rangle \right)$, *quantum players can always win.*

Proof.

Each player applies $S = \left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array} \right)$ to their qubit if $x_j = 1$. State is $|0\cdots0\rangle + i^{|x|} |1\cdots1\rangle$.

\[
|0\cdots0\rangle + |1\cdots1\rangle \xrightarrow{H^\otimes n} \sum_{|x|\text{ even}} |x\rangle \\
|0\cdots0\rangle - |1\cdots1\rangle \xrightarrow{H^\otimes n} \sum_{|x|\text{ odd}} |x\rangle
\]
PHP: Given even parity \(x \), find \(y \) such that \(|y| \equiv \frac{1}{2} |x| \pmod{2} \).

Theorem

Given the state \(|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\cdots 0\rangle + |1\cdots 1\rangle) \), *quantum players can always win.*

Proof.

Each player applies \(S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \) to their qubit if \(x_j = 1 \). State is \(|0\cdots 0\rangle + i^{|x|} |1\cdots 1\rangle \).

\[
|0\cdots 0\rangle + |1\cdots 1\rangle \xrightarrow{H^\otimes n} \sum_{|x| \text{ even}} |x\rangle \\
|0\cdots 0\rangle - |1\cdots 1\rangle \xrightarrow{H^\otimes n} \sum_{|x| \text{ odd}} |x\rangle
\]

Therefore all players apply a Hadamard, measure, and output the result.
QNC0/qpoly circuit

Parity Halving Problem

January 30, 2019 13 / 51
Parity Halving Problem

Classical Strategy

PHP: Given even parity \(x \), find \(y \) such that \(|y| = \frac{1}{2}|x| \mod 2 \).

Theorem (Game Hardness – Brassard, Broadbent, Tapp)

\textit{Any deterministic strategy wins on a random input with probability at most} \(\frac{1}{2} + 2^{-\lceil n/2 \rceil} \).
PHP: Given even parity \(x \), find \(y \) such that \(|y| = \frac{1}{2}|x| \pmod{2} \).

Theorem (Game Hardness – Brassard, Broadbent, Tapp)

Any deterministic strategy wins on a random input with probability at most \(\frac{1}{2} + 2^{-\lceil n/2 \rceil} \).

Vague Intuition

- Output parity depends on input HW modulo 4.
Parity Halving Problem

Classical Strategy

PHP: Given even parity x, find y such that $|y| = \frac{1}{2}|x|$ (mod 2).

Theorem (Game Hardness – Brassard, Broadbent, Tapp)

Any deterministic strategy wins on a random input with probability at most $\frac{1}{2} + 2^{-\lceil n/2 \rceil}$.

Vague Intuition

- Output parity depends on input HW modulo 4.
- Any one bit is almost completely independent of HW mod 4.
Classical Strategy

PHP: Given even parity x, find y such that $|y| = \frac{1}{2}|x|$ (mod 2).

Theorem (Game Hardness – Brassard, Broadbent, Tapp)

Any deterministic strategy wins on a random input with probability at most $\frac{1}{2} + 2^{-\lceil n/2 \rceil}$.

Vague Intuition

- Output parity depends on input HW modulo 4.
- Any one bit is almost completely independent of HW mod 4.
- Fraction of strings with HW i (mod 4) is $\frac{1}{4} + O(2^{-n/2})$.
Definition

A circuit is ℓ-local if each output bit depends on at most ℓ input bits.
Definition

A circuit is ℓ-local if each output bit depends on at most ℓ input bits.

Fact

A strategy for the game implies a 1-local circuit for PHP.
Locality in circuits

Definition
A circuit is ℓ-local if each output bit depends on at most ℓ input bits.

Fact
A strategy for the game implies a 1-local circuit for PHP.

Can improve game hardness to 1-local hardness.

Theorem (1-local hardness)
A 1-local classical circuit solves PHP_n on a random input w.p. $\leq \frac{1}{2} + 2^{-\lceil n/2 \rceil}$.
Locality $\ell > 1$

Idea

Reduce to 1-local circuit
Parity Halving Problem

Locality $\ell > 1$

Idea

Reduce to 1-local circuit by restricting some input bits.
Locality $\ell > 1$

Idea

Reduce to 1-local circuit by *restricting* some input bits.

- How do we reduce locality to 1?
- What problem does a circuit for PHP solve after restriction?
Lemma

Consider a circuit with \(n \) inputs, \(n \) outputs, and locality \(\ell \).
We can find a subset of \(\Omega\left(\frac{n}{\ell^2}\right) \) input bits such that restricting all other inputs gives a 1-local circuit.
Lemma

Consider a circuit with n inputs, n outputs, and locality ℓ. We can find a subset of $\Omega\left(\frac{n}{\ell^2}\right)$ input bits such that restricting all other inputs gives a 1-local circuit.

Proof.

Consider a graph with

- a vertex for each input bit,
- an edge if both inputs affect some common output bit.
Lemma

Consider a circuit with n inputs, n outputs, and locality ℓ. We can find a subset of $\Omega\left(\frac{n}{\ell^2}\right)$ input bits such that restricting all other inputs gives a 1-local circuit.

Proof.

Consider a graph with

- a vertex for each input bit,
- an edge if both inputs affect some common output bit.

Choose an independent set of vertices to get locality 1.
Lemma

Consider a circuit with n inputs, n outputs, and locality ℓ. We can find a subset of $\Omega\left(\frac{n}{\ell^2}\right)$ input bits such that restricting all other inputs gives a 1-local circuit.

Proof.

Consider a graph with
- a vertex for each input bit,
- an edge if both inputs affect some common output bit.

Choose an independent set of vertices to get locality 1.

Turán’s theorem: Largest independent set has size $\Omega\left(n^2/|E|\right)$.

Lemma

Consider a circuit with n inputs, n outputs, and locality ℓ. We can find a subset of $\Omega\left(\frac{n}{\ell^2}\right)$ input bits such that restricting all other inputs gives a 1-local circuit.

Proof.

Consider a graph with

- a vertex for each input bit,
- an edge if both inputs affect some common output bit.

Choose an independent set of vertices to get locality 1.

Turán’s theorem: Largest independent set has size $\Omega\left(n^2/|E|\right)$. Each output is responsible for at most $O(\ell^2)$ edges $\implies |E| = O(n\ell^2)$.
Parity Halving Problem

Inputs

Outputs

Inputs

Outputs
Restrictions of PHP

What happens when we take a circuit for PHP and fix some input bits?
What happens when we take a circuit for PHP and fix some input bits?

E.g., $x_n = 1 \implies$ remaining inputs have odd parity.
What happens when we take a circuit for PHP and fix some input bits?

E.g., $x_n = 1 \implies$ remaining inputs have odd parity.

Parity Halving Problem (Original)

Given $x \in \{0, 1\}^n$ such that $|x| \equiv 0 \pmod{2}$, output $y \in \{0, 1\}^n$ such that

- $|x| \equiv 0 \pmod{4} \implies |y| \equiv 0 \pmod{2}$,
- $|x| \equiv 2 \pmod{4} \implies |y| \equiv 1 \pmod{2}$.
Restrictions of PHP

What happens when we take a circuit for PHP and fix some input bits?

E.g., \(x_n = 1 \implies \) remaining inputs have odd parity.

Parity Halving Problem (Variant 1)

Given \(x \in \{0, 1\}^n \) such that \(|x| \equiv 1 \) (mod 2), output \(y \in \{0, 1\}^n \) such that

\[
\begin{align*}
|x| & \equiv 3 \pmod{4} \implies |y| \equiv 0 \pmod{2}, \\
|x| & \equiv 1 \pmod{4} \implies |y| \equiv 1 \pmod{2}.
\end{align*}
\]
What happens when we take a circuit for PHP and fix some input bits?

E.g., $x_n = 1 \implies$ remaining inputs have odd parity.

Parity Halving Problem (Variant 2)

Given $x \in \{0, 1\}^n$ such that $|x| \equiv 0 \pmod{2}$, output $y \in \{0, 1\}^n$ such that

- $|x| \equiv 2 \pmod{4} \implies |y| \equiv 0 \pmod{2}$,
- $|x| \equiv 0 \pmod{4} \implies |y| \equiv 1 \pmod{2}$.
What happens when we take a circuit for PHP and fix some input bits?

E.g., \(x_n = 1 \implies \) remaining inputs have odd parity.

Parity Halving Problem (Variant 3)

Given \(x \in \{0, 1\}^n \) such that \(|x| \equiv 1 \pmod{2}\), output \(y \in \{0, 1\}^n \) such that

\[
\begin{align*}
|x| & \equiv 1 \pmod{4} \implies |y| \equiv 0 \pmod{2}, \\
|x| & \equiv 3 \pmod{4} \implies |y| \equiv 1 \pmod{2}.
\end{align*}
\]
Restrictions of PHP

What happens when we take a circuit for PHP and fix some input bits?

E.g., \(x_n = 1 \) \(\implies \) remaining inputs have odd parity.

Parity Halving Problem (All Variants)

Given \(x \in \{0, 1\}^n \) such that \(|x| \equiv b \pmod{2}\), output \(y \in \{0, 1\}^n \) such that

\[
\begin{align*}
|x| & \equiv b \pmod{4} \quad \implies \quad |y| \equiv 0 \pmod{2}, \\
|x| & \equiv b + 2 \pmod{4} \quad \implies \quad |y| \equiv 1 \pmod{2}.
\end{align*}
\]

where \(b \in \{0, 1, 2, 3\} \).
Restrictions of PHP

What happens when we take a circuit for PHP and fix some input bits?

E.g., \(x_n = 1 \implies \) remaining inputs have odd parity.

Parity Halving Problem (All Variants)

Given \(x \in \{0, 1\}^n \) such that \(|x| \equiv b \pmod{2}\), output \(y \in \{0, 1\}^n \) such that

- \(|x| \equiv b \pmod{4}\) \(\implies\) \(|y| \equiv 0 \pmod{2}\),
- \(|x| \equiv b + 2 \pmod{4}\) \(\implies\) \(|y| \equiv 1 \pmod{2}\).

where \(b \in \{0, 1, 2, 3\} \).

Claim

All problems are equivalent.
Parity Halving Problem

Locality-ℓ Hardness Result

Theorem

An ℓ-local classical circuit solves PHP$_n$ on a random input w.p. $\leq \frac{1}{2} + 2^{-\Omega(n/\ell^2)}$.

Proof.

- Find $\Omega(n/\ell^2)$ inputs with non-overlapping light cones. Fix the rest.
- The remaining circuit solves a variant of PHP on $\Omega(n/\ell^2)$ bits.
Locality-\(\ell\) Hardness Result

Theorem

An \(\ell\)-local classical circuit solves \(\text{PHP}_n\) on a random input w.p. \(\leq \frac{1}{2} + 2^{-\Omega(n/\ell^2)}\).

Proof.

- Find \(\Omega(n/\ell^2)\) inputs with non-overlapping light cones. Fix the rest.
- The remaining circuit solves a variant of PHP on \(\Omega(n/\ell^2)\) bits.

Corollary

Since \(\text{NC}^0\) circuits have locality \(\ell = O(1)\), they solve PHP w.p. \(\frac{1}{2} + 2^{-\Omega(n)}\).
AC^0 hardness

Problem

Unbounded fan-in gates make it easy to have locality n.
Problem
Unbounded fan-in gates make it easy to have locality n.

Solution
Finally some circuit complexity theory: the Switching Lemma!!
AC^0 hardness

Problem
Unbounded fan-in gates make it easy to have locality n.

Solution
Finally some circuit complexity theory: the Switching Lemma!!

Switching Lemma (Intuition)
Consider an AC^0 circuit. With high probability, restricting a (large) random subset of bits produces a circuit with $n^{o(1)}$ locality.
Theorem

AC^0 circuits solve PHP w.p. at most $\frac{1}{2} + o(1)$.

Proof.

Apply the switching lemma.
Locality is reduced, and the resulting circuit solves a variant of PHP, so hardness for local circuits implies $\frac{1}{2} + o(1)$ probability of success.
Section 3

Relaxed Parity Halving Problem
We don’t want to use an advice state, but we can’t construct it ourselves.

Theorem

The state \(\frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle) \) *cannot be constructed in* QNC\(^0\).
We don’t want to use an advice state, but we can’t construct it ourselves.

Theorem

The state \(\frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle) \) cannot be constructed in QNC^0.

But we can construct a **poor man’s cat state**!

\[
\frac{1}{\sqrt{2}} (|z\rangle + |\bar{z}\rangle)
\]
We don’t want to use an advice state, but we can’t construct it ourselves.

Theorem

The state \(\frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle) \) cannot be constructed in QNC\(^0\).

But we can construct a **poor man’s cat state**!

\[
\frac{1}{\sqrt{2}} (|z\rangle + |\overline{z}\rangle) = X^z \frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle)
\]
We don’t want to use an advice state, but we can’t construct it ourselves.

Theorem

The state \(\frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle) \) cannot be constructed in QNC^0.

But we can construct a **poor man’s cat state**!

\[
\frac{1}{\sqrt{2}} (|z\rangle + |\bar{z}\rangle) = X^z \frac{1}{\sqrt{2}} (|0^n\rangle + |1^n\rangle)
\]

A cat state with some bits flipped.
Q: If we can construct $|z\rangle + |\overline{z}\rangle = X^z |\psi\rangle$ in QNC0, then why can’t we apply X^z to get $|\psi\rangle$?
Q: If we can construct $|z\rangle + |\bar{z}\rangle = X^z |\bigotimes\rangle$ in QNC0, then why can’t we apply X^z to get $|\bigotimes\rangle$?
A: We don’t know what z is!!
Poor Man’s Cat State

Q: If we can construct $|z\rangle + |\bar{z}\rangle = X^z |\otimes\rangle$ in QNC0, then why can’t we apply X^z to get $|\otimes\rangle$?

A: We don’t know what z is!!

Theorem

In QNC0 we can

- construct $\frac{1}{\sqrt{2}} (|z\rangle + |\bar{z}\rangle)$ for some uniformly random $z \in \{0, 1\}^n$,
- with information $d \in \{0, 1\}^{n-1}$ from which z can be recovered (up to complement) in AC0.
Consider a tree $G = (V, E)$. Let there be a $|+\rangle$ qubit for each vertex.
For each edge, measure the parity of the two endpoints.

$z_1 \oplus z_5 = 1$, $z_2 \oplus z_5 = 0$, $z_3 \oplus z_5 = 1$, $z_4 \oplus z_5 = 1$
Two vectors, z and \bar{z}, are consistent with these measurements.

\[
\begin{array}{c}
0 \
0 \
0 \oplus 1 = 1 \quad 0 \oplus 1 = 1 \quad 1 \oplus 1 = 0 \quad 0 \oplus 1 = 1 \\
0 \
0 \\
1 \
0
\end{array}
\]
To construct z, let z_i be the parity of the path from z_1 to z_i.

- $z_1 = 0$
- $z_i = 1$
To construct z, let z_i be the parity of the path from z_1 to z_i.

$$z_1 = 0$$

$$z_i = 1$$

$$z_2 = z_1 \oplus z_2 = (z_1 \oplus z_5) \oplus (z_2 \oplus z_5) = 1 \oplus 0 = 1$$
Final output is state $|01001\rangle + |10110\rangle$ (vertex qubits) and $d = 1011$ (edge measurements).
What kind of tree to use?

Line graph!
What kind of tree to use?

Line graph!

We want low diameter, so it is easier to compute z from d.
What kind of tree to use?

Line graph!

We want low diameter, so it is easier to compute z from d.

Star graph!
What kind of tree to use?

Line graph!

We want low diameter, so it is easier to compute z from d.

Star graph!

We want low degree, since edges incident at the same vertex cannot be simultaneously measured.
What kind of tree to use?

Line graph!

We want low diameter, so it is easier to compute z from d.

Star graph!

We want low degree, since edges incident at the same vertex cannot be simultaneously measured.

Balanced binary tree!

Max degree $\Delta = 3$, diameter $d = \Theta(\log n)$. (AC^0 can compute $O(\log n)$ size parities)
Q: What do we do with the poor man’s cat state?
Q: What do we do with the poor man’s cat state?

A: Pretend it’s a cat state and run the same algorithm!!
Q: What do we do with the poor man’s cat state?
A: Pretend it’s a cat state and run the same algorithm!!
Relaxed Parity Halving Problem

\[\begin{align*}
\langle \psi \rangle &= \{X \} S S H H \{X \} S S H H \{X \} S S H H \{y_1 \} \{y_2 \} \{y_3 \}
\end{align*} \]
Relaxed Parity Halving Problem

\[|ψ\rangle = S \times S \times S \times Z \times Z \times Z \times H \times H \times H \times y_1 \times y_2 \times y_3 \]
Relaxed Parity Halving Problem

\[Z \leftarrow 1 \times 2 \times 3 \]

\[S S S H H H X \]

\[|\psi\rangle \rightarrow S \rightarrow H \rightarrow X \rightarrow y_1 \]

\[\rightarrow S \rightarrow H \rightarrow X \rightarrow y_2 \]

\[\rightarrow S \rightarrow H \rightarrow X \rightarrow y_3 \]
Relaxed Parity Halving Problem

Given an even parity input $x \in \{0, 1\}^n$, output $y \in \{0, 1\}^n$ such that

$$|y| \equiv \frac{1}{2}|x| + \langle x, z \rangle \pmod{2}$$

$z \in \{0, 1\}^n$ is either vector consistent d.

$\text{RPHP} \in \mathcal{QNC}^0$ is clear.
Relaxed Parity Halving Problem

Given an even parity input $x \in \{0, 1\}^n$, output $y \in \{0, 1\}^n$ and $d \in \{0, 1\}^{n-1}$ such that

$$|y| \equiv \frac{1}{2}|x| + \langle x, z \rangle \pmod{2}$$

where $z \in \{0, 1\}^n$ is either vector consistent d.
Relaxed Parity Halving Problem

Given an even parity input $x \in \{0,1\}^n$, output $y \in \{0,1\}^n$ and $d \in \{0,1\}^{n-1}$ such that

$$|y| \equiv \frac{1}{2}|x| + \langle x, z \rangle \pmod{2}$$

where $z \in \{0,1\}^n$ is either vector consistent d.

RPHP \in QNC0 is clear.
Theorem

Any AC^0 circuit for RPHP succeeds with probability $< \frac{1}{2} + o(1)$.

Proof.

Suppose we have a circuit for RPHP. In AC^0, we can compute z from d because each z_i is an $O(\log n)$-bit parity.

"Correct" for z. Remove $\langle x, z \rangle$.

Compute $w_i = x_i \cdot z_i$ for all i.

XOR in corrections: $y'_i := y_i \oplus w_i$.

Note $|y'_i| = |y| + \langle x, z \rangle = \frac{1}{2} |x|$ (mod 2).

New circuit solves PHP (with the same probability)
Relaxed Parity Halving Problem

Classical Hardness

Theorem

Any AC⁰ circuit for RPHP succeeds with probability $\frac{1}{2} + o(1)$.

Proof.

- Suppose we have a circuit for RPHP.
Classical Hardness

Theorem

Any \(AC^0 \) *circuit for RPHP succeeds with probability* \(< \frac{1}{2} + o(1) \).*

Proof.

- Suppose we have a circuit for RPHP.
- In \(AC^0 \), we can compute \(z \) from \(d \) because each \(z_i \) is an \(O(\log n) \)-bit parity.
Theorem

Any AC0 circuit for RPHP succeeds with probability $< \frac{1}{2} + o(1)$.

Proof.

- Suppose we have a circuit for RPHP.
- In AC0, we can compute z from d because each z_i is an $O(\log n)$-bit parity.
- “Correct” for z. Remove $\langle x, z \rangle$.
Classical Hardness

Theorem

Any AC⁰ circuit for RPHP succeeds with probability < \frac{1}{2} + o(1).

Proof.

- Suppose we have a circuit for RPHP.
- In AC⁰, we can compute z from d because each zᵢ is an O(log n)-bit parity.
- “Correct” for z. Remove \langle x, z \rangle.
 - Compute wᵢ = xᵢzᵢ for all i.
 - Note |y'| = |y| + \langle x, z \rangle = \frac{1}{2}|x| (mod 2).
Theorem

Any AC⁰ circuit for RPHP succeeds with probability < \(\frac{1}{2} + o(1) \).

Proof.

- Suppose we have a circuit for RPHP.
- In AC⁰, we can compute \(z \) from \(d \) because each \(z_i \) is an \(O(\log n) \)-bit parity.
- “Correct” for \(z \). Remove \(\langle x, z \rangle \).
 - Compute \(w_i = x_i z_i \) for all \(i \).
 - XOR in corrections: \(y'_i := y_i \oplus w_i \).
 - Note \(|y'| = |y| + \langle x, z \rangle = \frac{1}{2}|x| \) (mod 2).
- New circuit solves PHP (with the same probability)
Section 4

Extensions
Extensions – Better Parameters

State of the art switching lemma results (Hastad and Rossman) give

Theorem

AC^0 circuits solve RPHP on a random input w.p. at most $\frac{1}{2} + 2^{-n^{0.999}}$.

Note: RPHP or PHP are solved exactly by $exp(\frac{n}{d})$ size AC^0 circuits.
State of the art switching lemma results (Hastad and Rossman) give

Theorem

\[\text{AC}^{0} \text{ circuits solve RPHP on a random input w.p. at most } \frac{1}{2} + 2^{-n^{0.999}}. \]

Theorem

\[\text{AC}^{0} \text{ circuits of depth } d \text{ and size } \exp(\frac{n^{1/2d}}{d}) \text{ solve RPHP w.p. at most } \frac{1}{2} + 2^{-n^{0.999}}. \]
Extensions – Better Parameters

State of the art switching lemma results (Hastad and Rossman) give

Theorem

\[\text{AC}^0 \text{ circuits solve RPHP on a random input w.p. at most } \frac{1}{2} + 2^{-n^{0.999}}. \]

Theorem

\[\text{AC}^0 \text{ circuits of depth } d \text{ and size } \exp(n^{1/2d}) \text{ solve RPHP w.p. at most } \frac{1}{2} + 2^{-n^{0.999}}. \]

Note: RPHP or PHP are solved exactly by \(\exp(n^{1/d}) \) size \(\text{AC}^0 \) circuits.
Parallel Copies

Parallel Parity Halving Problem

Given inputs $x_1, \ldots, x_k \in \{0, 1\}^n$, output $y_1, \ldots, y_k \in \{0, 1\}^n$ such that for all i,

$$|x_i| \equiv \frac{1}{2}|y_i| \pmod{2}.$$

In other words, make the circuit solve k copies of the problem at once.
Parallel Copies

Parallel Parity Halving Problem

Given inputs $x_1, \ldots, x_k \in \{0, 1\}^n$, output $y_1, \ldots, y_k \in \{0, 1\}^n$ such that for all i,

$$|x_i| \equiv \frac{1}{2} |y_i| \pmod{2}.$$

In other words, make the circuit solve k copies of the problem at once.

Theorem

AC^0 circuits of depth d and size $\exp(n^{1/2d})$ solve Parallel-RPHP w.p. at most $2^{-n^{0.999}}$.
2D Locality

- Any tree in the grid has diameter $\Omega(\sqrt{n})$.
- A different reduction works for trees with diameter $d = o(n)$.

Theorem

There exists a constant-depth quantum circuit for Grid-RPHP which is local on a 2D grid.
Any tree in the grid has diameter $\Omega(\sqrt{n})$.

A different reduction works for trees with diameter $d = o(n)$.

Theorem

There exists a constant-depth quantum circuit for Grid-RPHP which is local on a 2D grid.

Parallel-Grid-RPHP . . .
RPHP reduces to HLF

Theorem

\[\text{RPHP} \leq \text{HLF.} \]

There is no AC^0 circuit for HLF.
Extensions – HLF and Geometric Locality

RPHP reduces to HLF

Theorem

RPHP \leq HLF.

There is no AC^0 circuit for HLF.

Theorem

Parallel-Grid-RPHP \leq 2DHLF
Hidden Linear Function Problem

Given a symmetric matrix $A \in \{0, 1\}^{n \times n}$ and vector $b \in \{0, 1, 2, 3\}^n$, output any string y that may be output by the following circuit.
Hidden Linear Function Problem

Given a symmetric matrix $A \in \{0, 1\}^{n \times n}$ and vector $b \in \{0, 1, 2, 3\}^n$, output any string y that may be output by the following circuit.

Suppose we fix all of A, part of b.
\begin{align*}
|0\rangle & \xrightarrow{H} S |0\rangle \\
\end{align*}
Extensions

\[|+\rangle, |0\rangle, |+\rangle, |0\rangle, |+\rangle\]

\[S, H, S, H, S, H\]

\[d_1, d_2, y_1, y_2, y_3\]
Open Problems

- Can improve the classical hardness to more powerful circuit classes? $\text{AC}^0[2]$, TC^0, NC^1
 - Problem: Best circuit lower bounds stop around TC^0. Would need to be conditional.
 - Partial result: $\text{QNC}^0/\text{qpoly}$ vs. $\text{AC}^0[2]$.
- Can we get the same separation with 1D local circuits?
Thank You!