Alpha-bits, Teleportation and Black Holes

Geoffrey Penington, Stanford University
Alpha-bits: Teleportation and Black Holes

Geoffrey Penington, Stanford University
Why should I care about this talk?
Why should I care about this talk?

- Qubits are composite resources.
Why should I care about this talk?

- Qubits are composite resources.
- Another resource (that you have never heard of) is more fundamental than a qubit.
Why should I care about this talk?

- Qubits are composite resources.
- Another resource (that you have never heard of) is more fundamental than a qubit.
- Sending qubits at the quantum capacity does not exhaust the ability of a channel to send information.
Why should I care about this talk?

- Qubits are composite resources.
- Another resource (that you have never heard of) is more fundamental than a qubit.
- Sending qubits at the quantum capacity does not exhaust the ability of a channel to send information.
- There is no need to use classical bits to do entanglement-distillation, state-merging, remote state preparation, channel simulation or teleportation.
Why should I care about this talk?

- Qubits are composite resources.
- Another resource (that you have never heard of) is more fundamental than a qubit.
- Sending qubits at the quantum capacity does not exhaust the ability of a channel to send information.
- There is no need to use classical bits to do entanglement-distillation, state-merging, remote state preparation, channel simulation or teleportation.
- Quantum error correction in AdS/CFT is only approximate and bulk operators are state-dependent.
Why should I care about this talk?

- Qubits are composite resources.
- Another resource (that you have never heard of) is more fundamental than a qubit.
- Sending qubits at the quantum capacity does not exhaust the ability of a channel to send information.
- There is no need to use classical bits to do entanglement-distillation, state-merging, remote state preparation, channel simulation or teleportation.
- Quantum error correction in AdS/CFT is only approximate and bulk operators are state-dependent.
- It solves the black hole information paradox?
Part I: Alpha-bits and Teleportation
Quantum Communication Resource
Inequalities
Quantum Communication Resource
Inequalities
Quantum Communication Resource
Inequalities
Quantum Communication Resource
Inequalities

1 qubit \geq 1 ebit
Quantum Communication Resource Inequalities

\[1 \text{ cbit} \leq 1 \text{ qubit} \geq 1 \text{ ebit} \]
Quantum Communication Resource
Inequalities

\[1 \text{ cbit} \leq 1 \text{ qubit} \geq 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ cbits} \geq 1 \text{ qubit} \]
Quantum Communication Resource

Inequalities

\[1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ cbits} > 1 \text{ qubit} \]
Quantum Communication Resource
Inequalities

1 cbit < 1 qubit > 1 ebit

zero-bits

1 ebit + 2 ebits > 1 qubit
Quantum Communication Resource Inequalities

1 cbit < 1 qubit > 1 ebit

different version of zero-bits

1 ebit + 2 ebits > 1 qubit

weakened version of qubits
Quantum Communication Resource Inequalities

\[1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ zero-bits} \overset{(a)}{=} 1 \text{ qubit} \]

weakened version of qubits
Quantum Communication Resource Inequalities

\[1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ zero-bits} \overset{(a)}{=} 1 \text{ qubit} \]
Quantum Communication Resource

Inequalities

\[1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ zero-bits} \overset{(a)}{=} 1 \text{ qubit} \]

\[m \text{ qubits} \geq 2m \text{ zero-bits} \]
Quantum Communication Resource Inequalities

\[1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit} \]

\[1 \text{ ebit} + 2 \text{ zero-bits} \overset{(a)}{=} 1 \text{ qubit} \]

\[m \text{ qubits} \geq 2m \text{ zero-bits} \overset{(a)}{=} \]

\[1 \text{ cbit} > 1 \text{ zero-bit} ? \]

weakened version of qubits

asymptotic
Quantum Communication Resource Inequalities

\[
1 \text{ cbit} < 1 \text{ qubit} > 1 \text{ ebit}
\]

\[
1 \text{ ebit} + 2 \text{ zero-bits} \overset{(a)}{=} 1 \text{ qubit}
\]

\[
m \text{ qubits} \geq 2m \text{ zero-bits} \overset{(a)}{?}
\]

\[
1 \text{ cbit} > 1 \text{ zero-bit} ?
\]
What are zero-bits?
What are zero-bits?

\[1 \text{ zero-bit} = 1 \alpha\text{-bit with } \alpha = 0 \]
What are zero-bits?
What are zero-bits?

\[|\psi\rangle \xrightarrow{U} |\psi^E\rangle \approx |\omega^E\rangle \]
What are zero-bits?

\[|\psi\rangle \quad \begin{array}{ccc}
\text{U} \\
\hline \\
\text{B} \\
\hline \\
\text{E} \\
\hline \\
\text{dB} \gg d_E
\end{array} \approx \omega^E \]
What are zero-bits?
What are zero-bits?
What are zero-bits?

$d_B >> d_E$

\[\forall |\psi_1\rangle, |\psi_2\rangle, \]
\[\|\psi_1^B - \psi_2^B\|_1 \approx \|\psi_1 - \psi_2\|_1 \]

\[\forall |\psi\rangle, \]
\[\psi^E \approx \omega^E \]
What are zero-bits?

\[d_B \gg d_E \]

∀ |ψ₁⟩, |ψ₂⟩,
\[\|ψ_1^B - ψ_2^B\|_1 \approx \|ψ_1 - ψ_2\|_1 \]

∀ |ψ⟩,
\[ψ^E \approx ω^E \]
What are zero-bits?

\[d_B \gg d_E \]

\[\forall |\psi_1\rangle, |\psi_2\rangle, \quad \|\psi_1^B - \psi_2^B\|_1 \approx \|\psi_1 - \psi_2\|_1 \]

\[\forall |\psi\rangle, \quad \psi^E \approx \omega^E \]
What are zero-bits?

B encodes the zero-bits of $|\psi\rangle$

$d_B >> d_E$

∀ $|\psi_1\rangle, |\psi_2\rangle$

$$\|\psi_1^B - \psi_2^B\|_1$$

≈ $$\|\psi_1 - \psi_2\|_1$$

∀ $|\psi\rangle$

$\psi^E \approx \omega^E$
What can you do with zero-bits?
What can you do with zero-bits?

Not possible to recover the state $|\psi\rangle$ from B with no information about the state
- Error correction is not possible
What can you do with zero-bits?

Not possible to recover the state $|\psi\rangle$ from B with no information about the state
- Error correction is not possible

However if we know $|\psi\rangle \in \text{span} (|\psi_1\rangle, |\psi_2\rangle)$ then we can determine $|\psi\rangle$
What can you do with zero-bits?

Not possible to recover the state $|\psi\rangle$ from B with no information about the state
- Error correction is not possible

However if we know $|\psi\rangle \in \text{span}(|\psi_1\rangle, |\psi_2\rangle)$ then we can determine $|\psi\rangle$

Able to error-correct any two-dimensional subspace S
What can you do with zero-bits?

Not possible to recover the state $|\psi\rangle$ from B with no information about the state
- Error correction is not possible

However if we know $|\psi\rangle \in \text{span} (|\psi_1\rangle, |\psi_2\rangle)$ then we can determine $|\psi\rangle$

Able to error-correct any two-dimensional subspace S
Definition of zero-bits
Definition of qubits

“n qubits”
Definition of qubits

“n qubits”

$\mathcal{N} : S(A) \rightarrow S(B)$

$d_A = 2^n$
Definition of qubits

“n qubits”

$\mathcal{N} : S(A) \rightarrow S(B)$

$d_A = 2^n$

What do we need to be true about the channel?
Definition of qubits

“n qubits”

$\mathcal{N} : S(A) \rightarrow S(B)$

$d_A = 2^n$

What do we need to be true about the channel?

$\mathcal{N} = \text{Id}$?
Definition of qubits

“n qubits”

$N : S(A) \rightarrow S(B)$

$d_A = 2^n$

$\exists \mathcal{D}$

$\mathcal{D} \circ N = \text{Id}$

What do we need to be true about the channel?

Bob can always error correct so long as error correction is possible
Definition of zero-bits

"n zero-bits"

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S = 2 \]

\[\exists \mathcal{D}_S \quad \mathcal{D}_S \circ \mathcal{N}|_S = \text{Id}_S \]

OK now what about zero-bits?

Now Bob only has to be able to error correct any \textit{two-dimensional subspace}
Definition of zero-bits

"n qubits"

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S = 2 \]

\[\exists \mathcal{D}_S \]

\[\mathcal{D}_S \circ \mathcal{N}|_S = \text{Id}_S \]
Definition of zero-bits

“n zero-bits”

$\mathcal{N} : S(A) \to S(B)$

$d_A = 2^n$

$\forall S \subseteq A \quad d_S = 2$

$\exists \mathcal{D}_S$

$\| \mathcal{D}_S \circ \mathcal{N} \|_S - \text{Id}_S \|_S \leq \delta$

Need to make definition approximate if zero-bits are to be different from qubits
Definition of zero-bits

“n zero-bits”

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_s = 2 \]

\[\exists \mathcal{D}_s \]

\[\| \mathcal{D}_s \circ \mathcal{N} |_S - \text{Id}_S \|_\diamond \leq \delta \]

[Hayden, Winter 2012]
Definition of zero-bits

"n zero-bits"

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[\mathcal{N}^c : S(A) \rightarrow S(E) \]

[Hayden, Winter 2012]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S = 2 \]

\[\exists \mathcal{D}_S \]

\[\| \mathcal{D}_S \circ \mathcal{N} \|_S - \| \text{Id}_S \|_\diamond \leq \delta \]
Definition of zero-bits

"n zero-bits"

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S = 2 \]

\[\exists D_S \quad \| D_S \circ \mathcal{N}|_S - \text{Id}_S \|_\diamond \leq \delta \]

\[\mathcal{N}^c : S(A) \rightarrow S(E) \]

\[\forall |\psi\rangle \in A, \quad \| \mathcal{N}^c(\psi - \omega) \|_1 \leq \varepsilon \]

[Hayden, Winter 2012]
Definition of zero-bits

“\(n \) zero-bits”

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S = 2 \]

\[\exists \mathcal{D}_S \]

\[\| \mathcal{D}_S \circ \mathcal{N} \|_S - \text{Id}_S \|_\diamond \leq \delta \]

\[\mathcal{N}^c : S(A) \rightarrow S(E) \]

\[\forall |\psi\rangle \in A, \quad \| \mathcal{N}^c (|\psi\rangle - \omega) \|_1 \leq \varepsilon \]

\[\frac{1}{16} \delta^2 \leq \varepsilon \leq 8 \sqrt{\delta} \]
Definition of alpha-bits

"n α-bits"

\[\mathcal{N} : S(A) \rightarrow S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S \leq 2^{\alpha n} + 1 \]

\[\exists \mathcal{D}_S \]

\[\| \mathcal{D}_S \circ \mathcal{N} \|_S - \|\text{Id}_S\|_\diamond \leq \delta \]
Definition of alpha-bits

"n \alpha\text{-bits}"

\[\mathcal{N} : S(A) \rightarrow S(B)\]

\[d_A = 2^n\]

\[\forall S \subseteq A \quad d_S \leq 2^{\alpha n} + 1\]

\[\exists \mathcal{D}_S \quad \alpha = 1 \Rightarrow \text{qubits}\]

\[\|\mathcal{D}_S \circ \mathcal{N}\|_S - \text{Id}_S\|_\diamond \leq \delta\]
Definition of alpha-bits

“\(n \ \alpha\)-bits”

\[\mathcal{N} : S(A) \to S(B) \]

\[d_A = 2^n \]

\[\forall S \subseteq A \quad d_S \leq 2^{\alpha n} + 1 \]

\[\exists \mathcal{D}_S \quad \alpha = 1 \Rightarrow \text{qubits} \]

\[\| \mathcal{D}_S \circ \mathcal{N} |_S - \text{Id}_S \|_\diamond \leq \delta \]

\[\mathcal{N}^c : S(A) \to S(E) \]

\[\forall \left| \psi \right\rangle \in \mathcal{A} \mathcal{R}, \quad d_R = 2^{\alpha n} \quad \| \mathcal{N}^c \otimes \text{Id}_R \left(\psi - \omega \otimes \psi^R \right) \|_1 \leq \varepsilon \]

\[\frac{1}{16} \delta^2 \leq \varepsilon \leq 8\sqrt{\delta} \]
 Transmitting alpha-bits

\[A \xrightarrow{n} U \xrightarrow{\beta n} B \]

\[U \xrightarrow{(1 - \beta) n} E \]

\[R \xrightarrow{\alpha n} \]
Transmitting alpha-bits

Necessary condition to send alpha-bits. Also sufficient (with some subtleties about needing to use shared randomness and block coding).
Transmitting alpha-bits

\[\beta > \frac{1 + \alpha}{2} \]

Necessary condition to send alpha-bits. Also sufficient (with some subtleties about needing to use shared randomness and block coding).
Transmitting alpha-bits

\[\beta > \frac{1 + \alpha}{2} \]
Transmitting alpha-bits

\[\frac{1 + \alpha}{2} \ n \ \text{qubits} \]

\[A \]
\[U \]
\[\{ \}
\[B \]
\[\{ \beta n \}
\[\{ (1 - \beta) n \} \]
\[E \]
\[R \]
\[\{ \alpha n \} \]

\[\beta > \frac{1 + \alpha}{2} \]
Transmitting alpha-bits

\[\frac{1 + \alpha}{2} n \text{ qubits} \geq n \text{ } \alpha\text{-bits} \]
Transmitting alpha-bits

\[\frac{1 + \alpha}{2} n \text{ qubits} \geq n \alpha \text{-bits} \]

Diagram:

- \(A \) \(n \) \(U \)
- \(R \) \(\alpha n \)
- \(B \) \(\beta n \)
- \(A' \) \((1 - \beta) n \)

\[\beta > \frac{1 + \alpha}{2} \]
Transmitting alpha-bits

\[\frac{1 + \alpha}{2} n \text{ qubits} \geq n \alpha\text{-bits} + \frac{1 - \alpha}{2} n \text{ ebits} \]

\[A \]

\[B \]

\[\beta > \frac{1 + \alpha}{2} \]
Transmitting alpha-bits

\[(1 + \alpha) \text{ qubits} \overset{(a)}{\geq} 2 \alpha\text{-bits} + (1 - \alpha) \text{ ebits}\]

\[
\begin{array}{c}
A \\
\downarrow^n \\
\uparrow^n \\
\left\{ \begin{array}{c}
U \\
\downarrow^n \\
\uparrow^n \\
\left\{ \begin{array}{c}
\beta n \\
B \\
\end{array} \right. \\
\downarrow^n \\
\uparrow^n \\
\left\{ \begin{array}{c}
(1 - \beta) n \\
A' \\
\end{array} \right. \\
\downarrow^n \\
\uparrow^n \\
\left\{ \begin{array}{c}
\alpha n \\
R \\
\end{array} \right. \\
\end{array} \right. \\
\end{array}
\]

\[\beta > \frac{1 + \alpha}{2}\]
Alpha-bit resource equalities

\[(1 + \alpha) \text{ qubits} \overset{(a)}{=} 2 \alpha\text{-bits} + (1 - \alpha) \text{ ebits}\]
Alpha-bit resource equalities

\[(1 + \alpha)\ \text{qubits} \overset{(a)}{=} 2\ \alpha\text{-bits} + (1 - \alpha)\ \text{ebits}\]

To show \(\text{RHS} \geq \text{LHS}\):

1. \(1\ \alpha\text{-bit} + 1\ \text{ebit} \overset{(a)}{\geq} (1 + \alpha)\ \text{cobits}\)
Alpha-bit resource equalities

\[(1 + \alpha) \text{ qubits} \overset{(a)}{=} 2 \alpha\text{-bits} + (1 - \alpha) \text{ ebits}\]

To show \(\text{RHS} \geq \text{LHS}\):

1. \(1 \alpha\text{-bit} + 1 \text{ ebit} \overset{(a)}{\geq} (1 + \alpha) \text{ cobits}\)

2. \(1 \text{ qubit} + 1 \text{ ebit} = 2 \text{ cobits}\)
Alpha-bit resource equalities

\[(1 + \alpha) \text{ qubits} \overset{(a)}{=} 2 \alpha \text{-bits} + (1 - \alpha) \text{ ebits}\]

To show RHS \geq LHS:

1. 1α-bit + 1 ebit $\overset{(a)}{\geq} (1 + \alpha)$ cobits

2. 1 qubit + 1 ebit $= 2$ cobits \(\checkmark\)
Alpha-bit resource equalities

\[(1 + \alpha) \text{ qubits} \overset{(a)}{=} 2 \alpha\text{-bits} + (1 - \alpha) \text{ ebits}\]

To show RHS \(\geq\) LHS:

1. \(1 \alpha\text{-bit} + 1 \text{ ebit} \overset{(a)}{\geq} (1 + \alpha) \text{ cobits}\)

2. \(1 \text{ qubit} + 1 \text{ ebit} = 2 \text{ cobits}\)
What is a cobit?
What is a cobit?

Classical bit:

\[|0\rangle_A \rightarrow |0\rangle_B |0\rangle_E \quad |1\rangle_A \rightarrow |1\rangle_B |1\rangle_E \]
What is a cobit?

Classical bit:

\[|0\rangle_A \rightarrow |0\rangle_B |0\rangle_E \]
\[|1\rangle_A \rightarrow |1\rangle_B |1\rangle_E \]

Coherent classical bit (cobit):

\[|0\rangle_A \rightarrow |0\rangle_B |0\rangle_A \]
\[|1\rangle_A \rightarrow |1\rangle_B |1\rangle_A \]

Alice keeps purification
(Coherent) super-dense coding
(Coherent) super-dense coding

1. Alice and Bob share n ebits

$$
\sum_{k=0}^{2^n-1} |k\rangle_A |k\rangle_B
$$
(Coherent) super-dense coding

1. Alice and Bob share n ebits
2. Alice applies an operation to her qubits

$$
\sum_{k=0}^{2^n-1} e^{\frac{2\pi k r i}{2^n}} |k \oplus s\rangle_A |k\rangle_B
$$

$$
0 \leq r < 2^n \\
0 \leq s < 2^n
$$
(Coherent) super-dense coding

1. Alice and Bob share n ebits
2. Alice applies an operation to her qubits
3. Alice sends her qubits to Bob

\[
\sum_{k=0}^{2^n-1} e^{\frac{2\pi kr i}{2^n}} |k \oplus s\rangle_A |k\rangle_B
\]

$0 \leq r < 2^n$

$0 \leq s < 2^n$
(Coherent) alpha-bit super-dense coding

1. Alice and Bob share n ebits
2. Alice applies an operation to her qubits

$$\sum_{k=0}^{2^n-1} e^{\frac{2\pi k r i}{2^n}} |k \oplus s\rangle_A |k\rangle_B$$

$$0 \leq r < 2^n$$
$$0 \leq s < 2^{\alpha n}$$
(Coherent) alpha-bit super-dense coding

1. Alice and Bob share n ebits
2. Alice applies an operation to her qubits
3. Alice sends her qubits to Bob as α-bits

$$
\sum_{k=0}^{2^n-1} e^{\frac{2\pi k r i}{2^n}} |k \oplus s\rangle_A |k\rangle_B
$$

$0 \leq r < 2^n$
$0 \leq s < 2^{\alpha n}$
(Coherent) alpha-bit super-dense coding

1. Alice and Bob share n ebits
2. Alice applies an operation to her qubits
3. Alice sends her qubits to Bob as α-bits

$$\sum_{k=0}^{2^n-1} e^{\frac{2\pi k r i}{2^n}} |k \oplus s\rangle_A |k\rangle_B$$

$$0 \leq r < 2^n$$
$$0 \leq s < 2^{\alpha n}$$

Done
Zero-bits and ebits as fundamental resources

All noiseless quantum resources (qubits, \(\alpha \)-bits, cobits . . .) can be rewritten in terms of zero-bits and ebits

\[
\text{e.g. } 1 \ \alpha\text{-bit} \overset{(a)}{=} (1 + \alpha) \text{ zero-bits} + \alpha \text{ ebits}
\]
Zero-bits and ebits as fundamental resources

All noiseless quantum resources (qubits, \(\alpha \)-bits, cobits \ldots) can be rewritten in terms of zero-bits and ebits

\[1 \alpha\text{-bit} \overset{(a)}{=} (1 + \alpha) \text{ zero-bits} + \alpha \text{ ebits} \]

When rewritten in this basis, the quantum resource ordering becomes the product ordering:

\[(a, b) \geq (a', b') \iff (a \geq a') \land (b \geq b') \]
Alpha-bit Capacities

The α-bit capacity of a channel $\mathcal{N} : S(A') \to S(B)$ is given by

$$Q_\alpha(\mathcal{N}) = \sup_k \frac{1}{k} \sup_{|\psi\rangle \in A'^k A^k} \min \left(\frac{1}{1 + \alpha} I(A : B)_\rho, \frac{1}{\alpha} I(A\rangle B)_\rho \right)$$

where $\rho = (\mathcal{N}^\otimes k \otimes \text{Id})\psi$
Alpha-bit Capacities

The α-bit capacity of a channel $\mathcal{N} : S(A') \rightarrow S(B)$ is given by

$$Q_\alpha(\mathcal{N}) = \sup_k \frac{1}{k} \sup_{|\psi\rangle \in A^k A^k} \min \left(\frac{1}{1 + \alpha} I(A : B)_\rho, \frac{1}{\alpha} I(A \rangle B)_\rho \right)$$

where $\rho = (\mathcal{N}^\otimes k \otimes \text{Id}) |\psi\rangle$.

1 α-bit $\overset{(a)}{=} (1 + \alpha)$ zero-bits + α ebits

- zero-bit limited
- ebit limited
Amortised and entanglement-assisted capacities

With entanglement-assistance or an amortised quantum side channel, the capacity is given by

$$\frac{1}{1 + \alpha} \sup_{|\psi\rangle \in A' A} I(A : B)_\rho$$

Single letter!

Unconstrained by ebits and so only zero-bits matter. This explains why all entanglement-assisted capacities are proportional to mutual information.
Amortised and entanglement-assisted capacities

With entanglement-assistance or an amortised quantum side channel, the capacity is given by

\[
\frac{1}{1 + \alpha} \sup_{|\psi\rangle \in A' \mathcal{A}} I(A : B)_\rho
\]

Unconstrained by ebits and so only zero-bits matter. This explains why all entanglement-assisted capacities are proportional to mutual information.

If \(\alpha \to 1\) amortised \(\alpha\)-bit capacity \(\to\) entanglement-assisted quantum capacity

BUT amortised quantum capacity = quantum capacity
Amortised and entanglement-assisted capacities

With entanglement-assistance or an amortised quantum side channel, the capacity is given by

\[
\frac{1}{1 + \alpha} \sup_{|\psi\rangle \in A'\Lambda} I(A : B)_{\rho}
\]

Unconstrained by ebits and so only zero-bits matter. This explains why all entanglement-assisted capacities are proportional to mutual information.

If \(\alpha \to 1 \) amortised \(\alpha \)-bit capacity \(\Rightarrow \) *entanglement – assisted* quantum capacity

BUT amortised quantum capacity = quantum capacity

Answer: As \(\alpha \to 1 \), the size of the side channel diverges
Further Applications

\[\langle \mathcal{N}_{A' \to B} \rangle \stackrel{(a)}{\geq} I(A \parallel B) \text{ qubits} \]
Further Applications

Non-additivity of quantum capacity?

$$\langle N_{A' \to B} \rangle^{(a)} \geq I(A\rightarrow B) \text{ qubits} + I(A; E) \text{ zero-bits}$$
Further Applications

Non-additivity of quantum capacity?

\[\langle \mathcal{N}_{A' \rightarrow B} \rangle \overset{(a)}{\geq} I(A \mid B) \text{ qubits } + I(A; E) \text{ zero-bits} \]

Zero-bits can substitute for classical bits in:

- entanglement distillation, state merging
- remote state preparation and channel simulation

Optimality follows from optimality of zero-bit teleportation
Part II: Alpha-bits and Black Holes
AdS/CFT

Duality between an ordinary quantum field theory, specifically a CFT, known as the ‘boundary’ theory, and quantum gravity in asymptotically anti-de Sitter space in one higher dimension, the ‘bulk’.
AdS/CFT

Duality between an ordinary quantum field theory, specifically a CFT, known as the ‘boundary’ theory, and quantum gravity in asymptotically anti-de Sitter space in one higher dimension, the ‘bulk’.

What does this have to do with quantum information? Also what does it have to do with our universe which is not anti-de Sitter space?
The Ryu-Takayanagi formula
The Ryu-Takayanagi formula

\[S(\rho_A) = \min_\Sigma \left[\frac{\text{Area}}{4G_N} + S_{\text{bulk}}(\rho_{\alpha}) \right] \]
The Ryu-Takayanagi formula

\[S(\rho_A) = \min_{\Sigma} \left[\frac{\text{Area}}{4G_N} + S_{\text{bulk}}(\rho_a) \right] \]

“Information = Geometry”
Bulk operators in the central region can be represented by a boundary operator acting only on any two of the three boundary regions A, B and C.
Error correction and AdS/CFT

Bulk operators in the central region can be represented by a boundary operator acting only on any two of the three boundary regions A, B and C

(Operator algebra) quantum error correction
Error correction and AdS/CFT

Bulk operators in the central region can be represented by a boundary operator acting only on any two of the three boundary regions A, B and C.

(Operator algebra) quantum error correction

Bulk states with some particular geometry = code subspace of larger boundary Hilbert space.
Entanglement Wedge Reconstruction
Entanglement Wedge Reconstruction

Conventional techniques only allow operators in top and bottom region to be reconstructed in region A.
Entanglement Wedge Reconstruction

Conventional techniques only allow operators in top and bottom region to be reconstructed in region A.

BUT Ryu-Takayanagi formula suggests region A ‘knows’ about the area of the solid line
Entanglement Wedge Reconstruction

Conventional techniques only allow operators in top and bottom region to be reconstructed in region A.

BUT Ryu-Takayanagi formula suggests region A ‘knows’ about the area of the solid line

Entanglement wedge reconstruction conjecture: Actually the entire region between A and the RT surface can be reconstructed
The DHW Proof of Entanglement Wedge Reconstruction

\[\mathcal{H}_a \otimes \mathcal{H}_{\bar{a}} \subseteq \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}} \]
The DHW Proof of Entanglement Wedge Reconstruction

RT formula implies:

\[S(\rho_\bar{a} || \sigma_\bar{a}) \approx S(\rho_\bar{A} || \sigma_\bar{A}) \]

(JLMS 2016)
The DHW Proof of Entanglement Wedge Reconstruction

RT formula implies:

$$S(\rho_{\bar{a}} || \sigma_{\bar{a}}) \approx S(\rho_{\bar{A}} || \sigma_{\bar{A}}) \quad \text{(JLMS 2016)}$$

Hence:

$$\rho_{\bar{a}} = \sigma_{\bar{a}} \implies \rho_{\bar{A}} \approx \sigma_{\bar{A}}$$

$$\mathcal{H}_a \otimes \mathcal{H}_{\bar{a}} \subseteq \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$$
The DHW Proof of Entanglement Wedge Reconstruction

RT formula implies:

\[S(\rho_\bar{a} || \sigma_{\bar{a}}) \approx S(\rho_{\bar{A}} || \sigma_{\bar{A}}) \] \hspace{1em} (JLMS 2016)

Hence:

\[\rho_a = \sigma_a \implies \rho_{\bar{A}} = \sigma_{\bar{A}} \]
The DHW Proof of Entanglement Wedge Reconstruction

RT formula implies:
\[S(\rho_\bar{a}||\sigma_\bar{a}) \approx S(\rho_{\bar{A}}||\sigma_{\bar{A}}) \]
(JLMS 2016)

Hence:
\[\rho_a = \sigma_a \implies \rho_{\bar{A}} = \sigma_{\bar{A}} \]

Hence:
\[\exists D \quad D(\rho_{\bar{A}}) = \rho_a \]

\[\mathcal{H}_a \otimes \mathcal{H}_{\bar{a}} \subseteq \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}} \]
The DHW Proof of Entanglement Wedge Reconstruction

RT formula implies:
\[S(\rho\bar{a}||\sigma\bar{a}) \approx S(\rho\bar{A}||\sigma\bar{A}) \] \hspace{1cm} (JLMS 2016)

Hence:
\[\rho\bar{a} = \sigma\bar{a} \implies \rho\bar{A} \approx \sigma\bar{A} \]

Hence:
\[\exists \mathcal{D} \quad \mathcal{D}(\rho_A) \approx \rho_a \]

\[\mathcal{H}_a \otimes \mathcal{H}_{\bar{a}} \subseteq \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}} \]
The DHW Proof of Infinite Quantum Compression?
The DHW Proof of Infinite Quantum Compression?

\[\mathcal{H}_{\bar{a}} = \mathbb{C} \]

\[\rho_{\bar{a}} = \sigma_{\bar{a}} = 1 \]
The DHW Proof of Infinite Quantum Compression?

$$\rho_{\bar{a}} = \sigma_{\bar{a}} \implies \rho_{\bar{A}} \approx \sigma_{\bar{A}}$$

$$\mathcal{H}_{\bar{a}} = \mathbb{C}$$

$$\rho_{\bar{a}} = \sigma_{\bar{a}} = 1$$
The DHW Proof of Infinite Quantum Compression?

\[\rho_{\bar{a}} = \sigma_{\bar{a}} \implies \rho_{\bar{A}} \approx \sigma_{\bar{A}} \]

Hence:

\[\exists \mathcal{D} \quad \mathcal{D}(\rho_{\bar{A}}) \approx \rho_{\bar{a}} = \rho \]

\[\mathcal{H}_{\bar{a}} = \mathbb{C} \]

\[\rho_{\bar{a}} = \sigma_{\bar{a}} = 1 \]
The DHW Proof of Infinite Quantum Compression?

The DHW Proof of Infinite Quantum Compression?

\[\rho_a = \sigma_a \implies \rho \bar{A} \approx \sigma \bar{A} \]

Hence:

\[\exists D \quad D(\rho_A) \approx \rho_a = \rho \]

Successfully compressed number of qubits by a factor of two

\[\mathcal{H}_{\bar{a}} = \mathbb{C} \]

\[\rho_{\bar{a}} = \sigma_{\bar{a}} = 1 \]
The DHW Proof of Infinite Quantum Compression?

\[\rho_{\bar{a}} = \sigma_{\bar{a}} \implies \rho_{\bar{A}} \approx \sigma_{\bar{A}} \]

Hence:

\[\exists \mathcal{D} \quad \mathcal{D}(\rho_A) \approx \rho_{\bar{a}} = \rho \]

ITERATE!

Successfully compressed number of qubits by a factor of two

\[\mathcal{H}_{\bar{a}} = \mathbb{C} \]

\[\rho_{\bar{a}} = \sigma_{\bar{a}} = 1 \]
The DHW Proof of Infinite Quantum Compression?

\[\rho \bar{a} = \sigma \bar{a} \implies \rho \bar{A} \approx \sigma \bar{A} \]

Hence:

\[\exists \mathcal{D} \quad \mathcal{D}(\rho_A) \approx \rho_a = \rho \]

ITERATE!

Successfully compressed number of qubits by a factor of two

Exact zero-bits = exact qubits
Approximate zero-bits ≠ approximate qubits
The (slightly corrected) DHW Proof of Entanglement Wedge Reconstruction
The (slightly corrected) DHW Proof of Entanglement Wedge Reconstruction

Theorem by Cedric Beny:

\[\exists D \quad \| D \circ \text{Tr}_A - \text{Tr}_{\bar{a}} \|_\diamond \leq \delta \quad \iff \quad \forall |\psi\rangle \in \mathcal{H}_a \otimes \mathcal{H}_{\bar{a}} \otimes \mathcal{H}_R \quad \| \text{Tr}_A (\omega_a \otimes \psi_{\bar{a}R}) - \psi_{\bar{A}R} \|_1 \leq \varepsilon \]

\[\frac{1}{4} \delta^2 \leq \varepsilon \leq 2 \delta^{1/2} \]
The (slightly corrected) DHW Proof of Entanglement Wedge Reconstruction

Theorem by Cedric Beny:

\[\exists D \quad \| D \circ \text{Tr}_A - \text{Tr}_a \|_\diamond \leq \delta \iff \| \text{Tr}_A(\omega_a \otimes \psi_{\bar{a}R}) - \psi_{\bar{A}R} \|_1 \leq \varepsilon \]

\[\frac{1}{4} \delta^2 \leq \varepsilon \leq 2 \delta^{1/2} \]

Bulk operators that we want to reconstruct must lie within the entanglement wedge of A, even for states that are entangled with a reference system
Black holes and Alpha-bit Codes
Black holes and Alpha-bit Codes

Large code space dimensions means that including a reference system can make a big difference.
Black holes and Alpha-bit Codes

Large code space dimensions means that including a reference system can make a big difference

$A_1 < A_2 < A_1 + A_0$
Black holes and Alpha-bit Codes

For pure black hole states, region a' is always contained in the entanglement wedge of region A.

Large code space dimensions mean that including a reference system can make a big difference.

$A_1 < A_2 < A_1 + A_0$
Black holes and Alpha-bit Codes

\[\mathcal{A}_1 < \mathcal{A}_2 < \mathcal{A}_1 + \mathcal{A}_0 \]
Black holes and Alpha-bit Codes

REMINDER:
$$\min \sum \left[\frac{\text{Area}}{4G_N} + S_{\text{bulk}}(\rho a) \right]$$

$$\mathcal{A}_1 < \mathcal{A}_2 < \mathcal{A}_1 + \mathcal{A}_0$$
Black holes and Alpha-bit Codes

For states entangled with a reference system, region a' is not always contained in the entanglement wedge if the reference system dimension

$$d_R \geq e^{\alpha S_{BH}} \quad \text{for} \quad \alpha = \frac{A_2 - A_1}{A_0}$$

REMINDER:

$$\min \left[\sum \frac{\text{Area}}{4G_N} + S_{\text{bulk}}(\rho_a) \right]$$

$$A_1 < A_2 < A_1 + A_0$$
Black holes and Alpha-bit Codes

For states entangled with a reference system, region a' is not always contained in the entanglement wedge if the reference system dimension

$$d_R \geq e^{\alpha S_{BH}} \quad \text{for} \quad \alpha = \frac{A_2 - A_1}{A_0}$$

REMINDER:

$$\min \left[\sum \frac{\text{Area}}{4G_N} + S_{\text{bulk}}(\rho_a) \right]$$

Region A encodes the alpha-bits of region a'

$$A_1 < A_2 < A_1 + A_0$$
Black holes and Alpha-bit Codes

For states entangled with a reference system, region a’ is not always contained in the entanglement wedge if the reference system dimension

\[d_R \geq e^{\alpha S_{BH}} \quad \text{for} \quad \alpha = \frac{A_2 - A_1}{A_0} \]

We can only reconstruct operators if we know that the state lies in a sufficiently small subspace: the reconstruction is ‘state-dependent’

Region A encodes the alpha-bits of region a’
Tensor Network Toy Models:
The HaPPY Code with a black hole
Tensor Network Toy Models: The HaPPY Code with a black hole

Perfect tensor = unitary map from any three legs to the other three legs.
Tensor Network Toy Models: The HaPPY Code with a black hole

Can ‘push’ operators past the tensor

Perfect tensor = unitary map from any three legs to the other three legs.
Tensor Network Toy Models: The HaPPY Code with a black hole

Can ‘push’ operators past the tensor

Perfect tensor = unitary map from any three legs to the other three legs.
Tensor Network Toy Models: The HaPPY Code with a black hole

Can ‘push’ operators past the tensor

Perfect tensor = unitary map from any three legs to the other three legs.
Tensor Network Toy Models: The HaPPY Code with a black hole

Can ‘push’ operators past the tensor

Perfect tensor = unitary map from any three legs to the other three legs.
Tensor Network Toy Models: The HaPPY Code with a black hole

Tensor network formed by tiling perfect tensors to create AdS space
Tensor Network Toy Models: The HaPPY Code with a black hole

Tensor network formed by tiling perfect tensors to create AdS space

Each tensor has a single ‘bulk’ leg
Tensor Network Toy Models: The HaPPY Code with a black hole

Tensor network formed by tiling perfect tensors to create AdS space

Each tensor has a single ‘bulk’ leg

Black hole described by a random unitary with one large ‘bulk’ leg and many outward-flowing legs
Alpha-bits in the HaPPY Code
Alpha-bits in the HaPPY Code

Operators in the equivalent of region a’ can only be pushed to region A by pushing them through the black hole
Alpha-bits in the HaPPY Code

Operators in the equivalent of region a’ can only be pushed to region A by pushing them through the black hole

Only possible if the black hole bulk leg is sufficiently small
Consequences of Alpha-bit Codes in AdS/CFT
Consequences of Alpha-bit Codes in AdS/CFT

Qualitative features of AdS/CFT are only possible because the error correction is only approximate
Consequences of Alpha-bit Codes in AdS/CFT

Qualitative features of AdS/CFT are only possible because the error correction is only approximate.

However the errors are tiny: they are non-perturbatively small.
Consequences of Alpha-bit Codes in AdS/CFT

Qualitative features of AdS/CFT are only possible because the error correction is only approximate.

However the errors are tiny: they are non-perturbatively small.

RT surface can be made state-dependent at scales much larger than the Planck scale.
Consequences of Alpha-bit Codes in AdS/CFT

Qualitative features of AdS/CFT are only possible because the error correction is only approximate.

However the errors are tiny: they are non-perturbatively small.

RT surface can be made state-dependent at scales much larger than the Planck scale.

Operator reconstruction is state-dependent. State-dependence is also believed (by some) to be necessary to describe operators behind a black hole horizon.
The Information Paradox
The Information Paradox

Suppose we extract the Hawking radiation from a black hole into an auxiliary Hilbert space \mathcal{H}_X
The Information Paradox

Suppose we extract the Hawking radiation from a black hole into an auxiliary Hilbert space \mathcal{H}_X.

The interior is still contained in the entanglement wedge of the black hole system \mathcal{H}_A, so long as we are before the Page time.
The Information Paradox

Suppose we extract the Hawking radiation from a black hole into an auxiliary Hilbert space \mathcal{H}_X.

The interior is still contained in the entanglement wedge of the black hole system \mathcal{H}_A, so long as we are before the Page time.

Hawking radiation is thermally entangled with \mathcal{H}_A and so the entanglement entropy increases (agrees with RT formula).
The Information Paradox
The Information Paradox

However we cannot reconstruct the interior for codespaces with

$$d_{\text{code}} > e^{A/4G_N} - S_{\text{rad}}$$
The Information Paradox

However we cannot reconstruct the interior for codespaces with

\[d_{\text{code}} > e^{A/4G_N - S_{\text{rad}}} \]

The interior becomes increasingly state-dependent as the black hole evaporates.
The Information Paradox

However we cannot reconstruct the interior for codespaces with

\[d_{\text{code}} > e^{\frac{A}{4G_N}} - S_{\text{rad}} \]

The interior becomes increasingly state-dependent as the black hole evaporates.

Also implies reconstruction is only approximate.
After the Page Time
After the Page time, the interior is encoded in the Hawking radiation.
After the Page Time

After the Page time, the interior is encoded in the Hawking radiation.

The (new) Hawking radiation is now entangled with state-dependent degrees of freedom in \mathcal{H}_X. Hence the entanglement entropy will decrease. This agrees with the Ryu-Takayanagi formula and the Page curve.
After the Page Time

After the Page time, the interior is encoded in the Hawking radiation.

The (new) Hawking radiation is now entangled with state-dependent degrees of freedom in \mathcal{H}_X. Hence the entanglement entropy will decrease. This agrees with the Ryu-Takayanagi formula and the Page curve.

By carefully analysing the location in spacetime of the covariant Ryu-Takayanagi surface, we find that information falling into the black hole appears in the Hawking radiation after exactly the scrambling time (Hayden-Preskill).
Thank you