Publications

Export 9 results:
Author Title [ Type(Desc)] Year
Filters: Author is Justyna P. Zwolak  [Clear All Filters]
Journal Article
J. P. Zwolak, McJunkin, T., Kalantre, S. S., Dodson, J. P., MacQuarrie, E. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., and Taylor, J. M., Auto-tuning of double dot devices in situ with machine learning, Phys. Rev. Applied , vol. 13, no. 034075 , 2020.
S. S. Kalantre, Zwolak, J. P., Ragole, S., Wu, X., Zimmerman, N. M., Stewart, M. D., and Taylor, J. M., Machine Learning techniques for state recognition and auto-tuning in quantum dots, 2017.
S. Guo, Fritsch, A. R., Greenberg, C., Spielman, I. B., and Zwolak, J. P., Machine-learning enhanced dark soliton detection in Bose-Einstein condensates, Mach. Learn.: Sci. Technol. , vol. 2, p. 035020, 2021.
R. Dou and Zwolak, J. P., Practitioner's guide to social network analysis: Examining physics anxiety in an active-learning setting, 2018.
J. P. Zwolak, Kalantre, S. S., Wu, X., Ragole, S., and Taylor, J. M., QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments, PLOS ONE, vol. 13, no. 10, p. e0205844, 2018.
J. P. Zwolak, Kalantre, S. S., McJunkin, T., Weber, B. J., and Taylor, J. M., Ray-based classification framework for high-dimensional data, 2020.
J. P. Zwolak, McJunkin, T., Kalantre, S. S., Neyens, S. F., MacQuarrie, E. R., Eriksson, M. A., and Taylor, J. M., Ray-based framework for state identification in quantum dot devices, PRX Quantum, vol. 2, no. 020335, 2021.
C. A. Hass, Genz, F., Kustusch, M. Bridget, Ouime, P. - P. A., Pomian, K., Sayre, E. C., and Zwolak, J. P., Studying community development: a network analytical approach, 2018.
B. J. Weber, Kalantre, S. S., McJunkin, T., Taylor, J. M., and Zwolak, J. P., Theoretical bounds on data requirements for the ray-based classification, 2021.