Journal Article
A. Kalev and Kyrillidis, A., Validating and Certifying Stabilizer States, Phys. Rev. A , vol. 99, no. 042337, 2019.
J. K. Perron, Gullans, M., Taylor, J. M., Stewart, Jr., M. D., and Zimmerman, N. M., Valley Blockade in a Silicon Double Quantum Dot, Physical Review B, vol. 96, no. 20, p. 205302, 2017.
O. Higgott, Wang, D., and Brierley, S., Variational Quantum Computation of Excited States, Quantum , vol. 3, no. 156, 2019.
R. Rand, Verification Logics for Quantum Programs, 2019.
K. Hietala, Rand, R., Hung, S. - H., Wu, X., and Hicks, M., Verified Optimization in a Quantum Intermediate Representation, 2019.
K. Hietala, Rand, R., Hung, S. - H., Wu, X., and Hicks, M., A Verified Optimizer for Quantum Circuits, Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, 2021.
K. A. Landsman, Figgatt, C., Schuster, T., Linke, N. M., Yoshida, B., Yao, N. Y., and Monroe, C., Verified Quantum Information Scrambling, 2018.
J. Bub, Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal, Foundations of Physics, vol. 40, no. 9-10, pp. 1333 - 1340, 2010.
S. Paul and Tiesinga, E., Wannier functions using a discrete variable representation for optical lattices, Physical Review A, vol. 94, no. 3, p. 033606, 2016.
A. M. Childs, Harrow, A. W., and Wocjan, P., Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem , 2006.
H. Fu, Leung, D., and Mancinska, L., When the asymptotic limit offers no advantage in the local-operations-and-classical-communication paradigm, Phys. Rev. A , vol. 89, no. 052310, 2014.
J. Bub, Zeilinger, A., and Bertlmann, R., Whose Information? Information About What?, Quantum [Un]Speakables II: 50 Years of Bell’s Theorem, 2016.
J. Bub, Why Bohr was (Mostly) Right, 2017.
J. Bub, Why the quantum?, 2004.
J. Bub, Why the Tsirelson bound?, The Probable and the Improbable: The Meaning and Role of Probability in Physics, pp. 167-185, 2012.
J. M. Taylor and Calarco, T., Wigner crystals of ions as quantum hard drives, Physical Review A, vol. 78, no. 6, 2008.
G. Alagic, Jarret, M., and Jordan, S. P., Yang-Baxter operators need quantum entanglement to distinguish knots, Journal of Physics A, vol. 49, no. 7, p. 075203, 2016.
X. Wang and Wilde, M. M., α-Logarithmic negativity, 2019.