Publications

Export 78 results:
Author Title [ Type(Asc)] Year
Filters: Author is Andrew M. Childs  [Clear All Filters]
Journal Article
M. Aschbacher, Childs, A. M., and Wocjan, P., The limitations of nice mutually unbiased bases, Journal of Algebraic Combinatorics, vol. 25, no. 2, pp. 111 - 123, 2007.
A. M. Childs and Gosset, D., Levinson's theorem for graphs II, Journal of Mathematical Physics, vol. 53, no. 10, p. 102207, 2012.
A. M. Childs and Strouse, D. J., Levinson's theorem for graphs, Journal of Mathematical Physics, vol. 52, no. 8, p. 082102, 2011.
A. M. Childs, Leung, D., Mancinska, L., and Ozols, M., Interpolatability distinguishes LOCC from separable von Neumann measurements, Journal of Mathematical Physics, vol. 54, no. 11, p. 112204, 2013.
A. M. Childs, Landahl, A. J., and Parrilo, P. A., Improved quantum algorithms for the ordered search problem via semidefinite programming , Physical Review A, vol. 75, no. 3, 2007.
D. W. Berry, Childs, A. M., and Kothari, R., Hamiltonian simulation with nearly optimal dependence on all parameters, Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809, 2015.
A. M. Childs and Wiebe, N., Hamiltonian Simulation Using Linear Combinations of Unitary Operations, Quantum Information and Computation, vol. 12, no. 11-12, pp. 901-924, 2012.
D. Bacon, Childs, A. M., and van Dam, W., From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005.
A. M. Childs, Leung, D., Mancinska, L., and Ozols, M., A framework for bounding nonlocality of state discrimination, Communications in Mathematical Physics, vol. 323, no. 3, pp. 1121 - 1153, 2013.
A. M. Childs, Farhi, E., Goldstone, J., and Gutmann, S., Finding cliques by quantum adiabatic evolution, 2000.
A. M. Childs, Ostrander, A., and Su, Y., Faster quantum simulation by randomization, Quantum , vol. 3, no. 182, 2019.
D. W. Berry, Childs, A. M., Cleve, R., Kothari, R., and Somma, R. D., Exponential improvement in precision for simulating sparse Hamiltonians, Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), pp. 283-292, 2014.
A. M. Childs, Cleve, R., Deotto, E., Farhi, E., Gutmann, S., and Spielman, D. A., Exponential algorithmic speedup by quantum walk, 2002.
A. M. Childs, Farhi, E., and Gutmann, S., An example of the difference between quantum and classical random walks, Quantum Information Processing, vol. 1, no. 1/2, pp. 35 - 43, 2001.
A. M. Childs, Patterson, R. B., and MacKay, D. J. C., Exact sampling from non-attractive distributions using summary states, Physical Review E, vol. 63, no. 3, 2001.
A. M. Childs, Reichardt, B. W., Spalek, R., and Zhang, S., Every NAND formula of size N can be evaluated in time N^1/2+o(1) on a quantum computer , 2007.
A. M. Childs and Li, T., Efficient simulation of sparse Markovian quantum dynamics, Quantum Information and Computation, vol. 17, pp. 901-947, 2017.
A. M. Childs, Kothari, R., Ozols, M., and Roetteler, M., Easy and hard functions for the Boolean hidden shift problem, Proceedings of TQC 2013, vol. 22, pp. 50-79, 2013.
A. M. Childs, Cleve, R., Jordan, S. P., and Yeung, D., Discrete-query quantum algorithm for NAND trees, Theory of Computing, vol. 5, no. 1, pp. 119 - 123, 2009.
A. M. Childs, Jao, D., and Soukharev, V., Constructing elliptic curve isogenies in quantum subexponential time, Journal of Mathematical Cryptology, vol. 8, no. 1, pp. 1 - 29, 2014.
D. J. Brod and Childs, A. M., The computational power of matchgates and the XY interaction on arbitrary graphs, Quantum Information and Computation, vol. 14, no. 11-12, pp. 901-916, 2014.
A. M. Childs, Gosset, D., and Webb, Z., Complexity of the XY antiferromagnet at fixed magnetization, Quantum Information and Computation, vol. 16, no. 1-2, pp. 1-18, 2016.
A. M. Childs, Schoute, E., and Unsal, C. M., Circuit Transformations for Quantum Architectures, Proceedings of TQC 2019, LIPIcs, vol. 135 , no. 3, 2019.
A. M. Childs, Leung, D., Mancinska, L., and Ozols, M., Characterization of universal two-qubit Hamiltonians, 2010.
A. M. Childs, Gosset, D., and Webb, Z., The Bose-Hubbard model is QMA-complete, Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), vol. 8572, pp. 308-319, 2014.