Publications

Export 78 results:
Author [ Title(Asc)] Type Year
Filters: Author is Andrew M. Childs  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
M. Aschbacher, Childs, A. M., and Wocjan, P., The limitations of nice mutually unbiased bases, Journal of Algebraic Combinatorics, vol. 25, no. 2, pp. 111 - 123, 2007.
A. M. Childs and Gosset, D., Levinson's theorem for graphs II, Journal of Mathematical Physics, vol. 53, no. 10, p. 102207, 2012.
A. M. Childs and Strouse, D. J., Levinson's theorem for graphs, Journal of Mathematical Physics, vol. 52, no. 8, p. 082102, 2011.
H
D. W. Berry, Childs, A. M., and Kothari, R., Hamiltonian simulation with nearly optimal dependence on all parameters, Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809, 2015.
A. M. Childs and Wiebe, N., Hamiltonian Simulation Using Linear Combinations of Unitary Operations, Quantum Information and Computation, vol. 12, no. 11-12, pp. 901-924, 2012.
E
D. W. Berry, Childs, A. M., Cleve, R., Kothari, R., and Somma, R. D., Exponential improvement in precision for simulating sparse Hamiltonians, Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), pp. 283-292, 2014.
A. M. Childs, Cleve, R., Deotto, E., Farhi, E., Gutmann, S., and Spielman, D. A., Exponential algorithmic speedup by quantum walk, 2002.
A. M. Childs, Farhi, E., and Gutmann, S., An example of the difference between quantum and classical random walks, Quantum Information Processing, vol. 1, no. 1/2, pp. 35 - 43, 2001.
A. M. Childs, Patterson, R. B., and MacKay, D. J. C., Exact sampling from non-attractive distributions using summary states, Physical Review E, vol. 63, no. 3, 2001.
A. M. Childs, Reichardt, B. W., Spalek, R., and Zhang, S., Every NAND formula of size N can be evaluated in time N^1/2+o(1) on a quantum computer , 2007.
A. M. Childs and Li, T., Efficient simulation of sparse Markovian quantum dynamics, Quantum Information and Computation, vol. 17, pp. 901-947, 2017.
A. M. Childs, Kothari, R., Ozols, M., and Roetteler, M., Easy and hard functions for the Boolean hidden shift problem, Proceedings of TQC 2013, vol. 22, pp. 50-79, 2013.
B
A. M. Childs, Gosset, D., and Webb, Z., The Bose-Hubbard model is QMA-complete, Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), vol. 8572, pp. 308-319, 2014.