Export 803 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A. M. Childs and Wiebe, N., Hamiltonian Simulation Using Linear Combinations of Unitary Operations, Quantum Information and Computation, vol. 12, no. 11-12, pp. 901-924, 2012.
D. W. Berry, Childs, A. M., and Kothari, R., Hamiltonian simulation with nearly optimal dependence on all parameters, Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809, 2015.
S. Kimmel, Lin, C. Yen- Yu, Low, G. Hao, Ozols, M., and Yoder, T. J., Hamiltonian Simulation with Optimal Sample Complexity, npj Quantum Information, vol. 13, no. 3, 2017.
M. Foss-Feig, Hermele, M., Gurarie, V., and Rey, A. Maria, Heavy fermions in an optical lattice, Physical Review A, vol. 82, no. 5, 2010.
K. Qian, Eldredge, Z., Ge, W., Pagano, G., Monroe, C., Porto, J. V., and Gorshkov, A. V., Heisenberg-Scaling Measurement Protocol for Analytic Functions with Quantum Sensor Networks, 2019.
C. Crocker, Lichtman, M., Sosnova, K., Carter, A., Scarano, S., and Monroe, C., High Purity Single Photons Entangled with an Atomic Memory, 2018.
J. D. Wong-Campos, Johnson, K. G., Neyenhuis, B., Mizrahi, J., and Monroe, C., High resolution adaptive imaging of a single atom, Nature Photonics, no. 10, pp. 606-610, 2016.
M. Russ, Zajac, D. M., Sigillito, A. J., Borjans, F., Taylor, J. M., Petta, J. R., and Burkard, G., High-fidelity quantum gates in Si/SiGe double quantum dots, Physical Review B, vol. 97, no. 8, p. 085421, 2018.
M. Gullans, Taylor, J. M., Imamoglu, A., Ghaemi, P., and Hafezi, M., High-Order Multipole Radiation from Quantum Hall States in Dirac Materials, Physical Review B, vol. 95, no. 23, p. 235439, 2017.
A. M. Childs, Liu, J. - P., and Ostrander, A., High-precision quantum algorithms for partial differential equations, 2020.
J. M. Taylor, Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P. R., Yacoby, A., Walsworth, R., and Lukin, M. D., High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics, vol. 4, no. 10, pp. 810 - 816, 2008.
Z. - C. Yang, Liu, F., Gorshkov, A. V., and Iadecola, T., Hilbert-Space Fragmentation from Strict Confinement, 2019.
D. Bao and Lackey, B., A Hodge decomposition theorem for Finsler spaces, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, vol. 323, pp. 51–56, 1996.
B. Swingle and Wang, Y., Holographic Complexity of Einstein-Maxwell-Dilaton Gravity, J. High Energ. Phys. , vol. 106, 2018.
A. M. Kaufman, Lester, B. J., Reynolds, C. M., Wall, M. L., Foss-Feig, M., Hazzard, K. R. A., Rey, A. M., and Regal, C. A., Hong-Ou-Mandel atom interferometry in tunnel-coupled optical tweezers, Science, vol. 345, no. 6194, pp. 306 - 309, 2014.
C. J. Cao, Chatwin-Davies, A., and Singh, A., How Low Can Vacuum Energy Go When Your Fields Are Finite-Dimensional?, 2019.
S. Paul, Johnson, P. R., and Tiesinga, E., A Hubbard model for ultracold bosonic atoms interacting via zero-point-energy induced three-body interactions, Physical Review A, vol. 93, no. 4, p. 043616, 2016.