Publications

Export 6 results:
[ Author(Desc)] Title Type Year
Filters: Author is Justyna P. Zwolak  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
J. P. Zwolak, McJunkin, T., Kalantre, S. S., Neyens, S. F., MacQuarrie, E. R., Eriksson, M. A., and Taylor, J. M., Ray-based framework for state identification in quantum dot devices, PRX Quantum, vol. 2, no. 020335, 2021.
J. P. Zwolak, Kalantre, S. S., McJunkin, T., Weber, B. J., and Taylor, J. M., Ray-based classification framework for high-dimensional data, Proceedings of the Machine Learning and the Physical Sciences Workshop at NeurIPS 2020, Vancouver, Canada, 2020.
J. P. Zwolak, McJunkin, T., Kalantre, S. S., Dodson, J. P., MacQuarrie, E. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., and Taylor, J. M., Auto-tuning of double dot devices in situ with machine learning, Phys. Rev. Applied , vol. 13, no. 034075 , 2020.
J. P. Zwolak, Taylor, J. M., Andrews, R., Benson, J., Bryant, G., Buterakos, D., Chatterjee, A., Sarma, S. Das, Eriksson, M. A., Greplová, E., Gullans, M., Hader, F., Kovach, T. J., Mundada, P. S., Ramsey, M., Rasmussen, T., Severin, B., Sigillito, A., Undseth, B., and Weber, B., Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report, 2023.
J. P. Zwolak, Kalantre, S. S., Wu, X., Ragole, S., and Taylor, J. M., QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments, PLOS ONE, vol. 13, no. 10, p. e0205844, 2018.
J. P. Zwolak and Taylor, J. M., Colloquium: Advances in automation of quantum dot devices control, Reviews of Modern Physics, vol. 95, 2023.