%0 Journal Article %J Physical Review Letters %D 2012 %T Steady-state many-body entanglement of hot reactive fermions %A Michael Foss-Feig %A Andrew J. Daley %A James K. Thompson %A Ana Maria Rey %X Entanglement is typically created via systematic intervention in the time evolution of an initially unentangled state, which can be achieved by coherent control, carefully tailored non-demolition measurements, or dissipation in the presence of properly engineered reservoirs. In this paper we show that two-component Fermi gases at ~\mu K temperatures naturally evolve, in the presence of reactive two-body collisions, into states with highly entangled (Dicke-type) spin wavefunctions. The entanglement is a steady-state property that emerges---without any intervention---from uncorrelated initial states, and could be used to improve the accuracy of spectroscopy in experiments with fermionic alkaline earth atoms or fermionic groundstate molecules. %B Physical Review Letters %V 109 %8 2012/12/4 %G eng %U http://arxiv.org/abs/1207.4741v1 %N 23 %! Phys. Rev. Lett. %R 10.1103/PhysRevLett.109.230501 %0 Journal Article %J Physical Review Letters %D 2009 %T Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers %A Alexey V. Gorshkov %A Ana Maria Rey %A Andrew J. Daley %A Martin M. Boyd %A Jun Ye %A Peter Zoller %A Mikhail D. Lukin %X We propose and analyze a novel approach to quantum information processing, in which multiple qubits can be encoded and manipulated using electronic and nuclear degrees of freedom associated with individual alkaline-earth atoms trapped in an optical lattice. Specifically, we describe how the qubits within each register can be individually manipulated and measured with sub-wavelength optical resolution. We also show how such few-qubit registers can be coupled to each other in optical superlattices via conditional tunneling to form a scalable quantum network. Finally, potential applications to quantum computation and precision measurements are discussed. %B Physical Review Letters %V 102 %8 2009/3/18 %G eng %U http://arxiv.org/abs/0812.3660v2 %N 11 %! Phys. Rev. Lett. %R 10.1103/PhysRevLett.102.110503