%0 Journal Article %D 2019 %T Opportunities for Nuclear Physics & Quantum Information Science %A I. C. Cloët %A Matthew R. Dietrich %A John Arrington %A Alexei Bazavov %A Michael Bishof %A Adam Freese %A Alexey V. Gorshkov %A Anna Grassellino %A Kawtar Hafidi %A Zubin Jacob %A Michael McGuigan %A Yannick Meurice %A Zein-Eddine Meziani %A Peter Mueller %A Christine Muschik %A James Osborn %A Matthew Otten %A Peter Petreczky %A Tomas Polakovic %A Alan Poon %A Raphael Pooser %A Alessandro Roggero %A Mark Saffman %A Brent VanDevender %A Jiehang Zhang %A Erez Zohar %X

his whitepaper is an outcome of the workshop Intersections between Nuclear Physics and Quantum Information held at Argonne National Laboratory on 28-30 March 2018 [www.phy.anl.gov/npqi2018/]. The workshop brought together 116 national and international experts in nuclear physics and quantum information science to explore opportunities for the two fields to collaborate on topics of interest to the U.S. Department of Energy (DOE) Office of Science, Office of Nuclear Physics, and more broadly to U.S. society and industry. The workshop consisted of 22 invited and 10 contributed talks, as well as three panel discussion sessions. Topics discussed included quantum computation, quantum simulation, quantum sensing, nuclear physics detectors, nuclear many-body problem, entanglement at collider energies, and lattice gauge theories.

%8 03/13/2019 %G eng %U https://arxiv.org/abs/1903.05453 %0 Journal Article %J Physical Review Letters %D 2011 %T Resolved atomic interaction sidebands in an optical clock transition %A Michael Bishof %A Yige Lin %A Matthew D. Swallows %A Alexey V. Gorshkov %A Jun Ye %A Ana Maria Rey %X We report the observation of resolved atomic interaction sidebands (ISB) in the ${}^{87}$Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional (2D) optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts in [1]. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and usable as powerful spectroscopic tools in strongly interacting alkaline-earth gases. %B Physical Review Letters %V 106 %8 2011/6/22 %G eng %U http://arxiv.org/abs/1102.1016v2 %N 25 %! Phys. Rev. Lett. %R 10.1103/PhysRevLett.106.250801