%0 Journal Article %J Science %D 2018 %T Observation of three-photon bound states in a quantum nonlinear medium %A Qi-Yu Liang %A Aditya V. Venkatramani %A Sergio H. Cantu %A Travis L. Nicholson %A Michael Gullans %A Alexey V. Gorshkov %A Jeff D. Thompson %A Cheng Chin %A Mikhail D. Lukin %A Vladan Vuletic %X

Bound states of massive particles, such as nuclei, atoms or molecules, are ubiquitous in nature and constitute the bulk of the visible world around us. In contrast, photons typically only weakly influence each other due to their very weak interactions and vanishing mass. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. In particular, photon correlation and conditional phase measurements reveal the distinct features associated with three-photon and two-photon bound states. Such photonic trimers and dimers can be viewed as quantum solitons with shape-preserving wavefunctions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are quantitatively described by an effective field theory (EFT) of Rydberg-induced photon-photon interactions, which demonstrates the presence of a substantial effective three-body force between the photons. These observations pave the way towards the realization, studies, and control of strongly interacting quantum many-body states of light.

%B Science %V 359 %P 783-786 %8 2018/02/16 %G eng %U http://science.sciencemag.org/content/359/6377/783 %N 6377 %R 10.1126/science.aao7293 %0 Journal Article %J Science %D 2013 %T All-Optical Switch and Transistor Gated by One Stored Photon %A Wenlan Chen %A Kristin M. Beck %A Robert Bücker %A Michael Gullans %A Mikhail D. Lukin %A Haruka Tanji-Suzuki %A Vladan Vuletic %X The realization of an all-optical transistor where one 'gate' photon controls a 'source' light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical resonator, we realize a device in which one stored gate photon controls the resonator transmission of subsequently applied source photons. A weak gate pulse induces bimodal transmission distribution, corresponding to zero and one gate photons. One stored gate photon produces fivefold source attenuation, and can be retrieved from the atomic ensemble after switching more than one source photon. Without retrieval, one stored gate photon can switch several hundred source photons. With improved storage and retrieval efficiency, our work may enable various new applications, including photonic quantum gates, and deterministic multiphoton entanglement. %B Science %V 341 %P 768 - 770 %8 2013/07/04 %G eng %U http://arxiv.org/abs/1401.3194v1 %N 6147 %! Science %R 10.1126/science.1238169 %0 Journal Article %J Nature (London) %D 2013 %T Attractive Photons in a Quantum Nonlinear Medium %A Ofer Firstenberg %A Thibault Peyronel %A Qi-Yu Liang %A Alexey V. Gorshkov %A Mikhail D. Lukin %A Vladan Vuletic %B Nature (London) %V 502 %P 71 %G eng %U http://dx.doi.org/10.1038/nature12512 %0 Journal Article %J Physical Review A %D 2010 %T Fast Entanglement Distribution with Atomic Ensembles and Fluorescent Detection %A Jonatan B. Brask %A Liang Jiang %A Alexey V. Gorshkov %A Vladan Vuletic %A Anders S. Sorensen %A Mikhail D. Lukin %X Quantum repeaters based on atomic ensemble quantum memories are promising candidates for achieving scalable distribution of entanglement over long distances. Recently, important experimental progress has been made towards their implementation. However, the entanglement rates and scalability of current approaches are limited by relatively low retrieval and single-photon detector efficiencies. We propose a scheme, which makes use of fluorescent detection of stored excitations to significantly increase the efficiency of connection and hence the rate. Practical performance and possible experimental realizations of the new protocol are discussed. %B Physical Review A %V 81 %8 2010/2/12 %G eng %U http://arxiv.org/abs/0907.3839v2 %N 2 %! Phys. Rev. A %R 10.1103/PhysRevA.81.020303 %0 Journal Article %D 2003 %T Ultracold Cs$_2$ Feshbach Spectroscopy %A Cheng Chin %A Vladan Vuletic %A Andrew J. Kerman %A Steven Chu %A Eite Tiesinga %A Paul J. Leo %A Carl J. Williams %X We have observed and located more than 60 magnetic field-induced Feshbach resonances in ultracold collisions of ground-state $^{133}$Cs atoms. These resonances are associated with molecular states with up to four units of rotational angular momentum, and are detected through variations in the elastic, inelastic, and radiative collision cross sections. These observations allow us to greatly improve upon the interaction potentials between two cesium atoms and to reproduce the positions of most resonances to accuracies better than 0.5%. Based on the relevant coupling scheme between the electron spin, nuclear spin, and orbital angular momenta of the nuclei, quantum numbers and energy structure of the molecular states beneath the dissociation continuum are revealed. Finally, we predict the relevant collision properties for cesium Bose-Einstein condensation experiments. %8 2003/12/23 %G eng %U http://arxiv.org/abs/cond-mat/0312613v2