We propose a protocol for sympathetically cooling neutral atoms without destroying the quantum information stored in their internal states. This is achieved by designing state-insensitive Rydberg interactions between the data-carrying atoms and cold auxiliary atoms. The resulting interactions give rise to an effective phonon coupling, which leads to the transfer of heat from the data atoms to the auxiliary atoms, where the latter can be cooled by conventional methods. This can be used to extend the lifetime of quantum storage based on neutral atoms and can have applications for long quantum computations. The protocol can also be modified to realize state-insensitive interactions between the data and the auxiliary atoms but tunable and non-trivial interactions among the data atoms, allowing one to simultaneously cool and simulate a quantum spin-model.

%8 7/28/2019 %G eng %U https://arxiv.org/abs/1907.11156 %0 Journal Article %D 2019 %T Quantum Simulation of Hyperbolic Space with Circuit Quantum Electrodynamics: From Graphs to Geometry %A Igor Boettcher %A Przemyslaw Bienias %A Ron Belyansky %A Alicia J. KollĂˇr %A Alexey V. Gorshkov %XWe show how quantum many-body systems on hyperbolic lattices with nearest-neighbor hopping and local interactions can be mapped onto quantum field theories in continuous negatively curved space. The underlying lattices have recently been realized experimentally with superconducting resonators and therefore allow for a table-top quantum simulation of quantum physics in curved background. Our mapping provides a computational tool to determine observables of the discrete system even for large lattices, where exact diagonalization fails. As an application and proof of principle we quantitatively reproduce the ground state energy, spectral gap, and correlation functions of the noninteracting lattice system by means of analytic formulas on the PoincarĂ© disk, and show how conformal symmetry emerges for large lattices. This sets the stage for studying interactions and disorder on hyperbolic graphs in the future. Our analysis also reveals in which sense discrete hyperbolic lattices emulate the continuous geometry of negatively curved space and thus can be used to resolve fundamental open problems at the interface of interacting many-body systems, quantum field theory in curved space, and quantum gravity.

%8 2019/10/27 %G eng %U https://arxiv.org/abs/1910.12318