%0 Journal Article %J Phys. Rev. Research %D 2022 %T Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law Interactions %A Andrew Y. Guo %A Abhinav Deshpande %A Su-Kuan Chu %A Zachary Eldredge %A Przemyslaw Bienias %A Dhruv Devulapalli %A Yuan Su %A Andrew M. Childs %A Alexey V. Gorshkov %X

The standard circuit model for quantum computation presumes the ability to directly perform gates between arbitrary pairs of qubits, which is unlikely to be practical for large-scale experiments. Power-law interactions with strength decaying as 1/rα in the distance r provide an experimentally realizable resource for information processing, whilst still retaining long-range connectivity. We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets. Our implementation allows the quantum Fourier transform (QFT) and Shor's algorithm to be performed on a D-dimensional lattice in time logarithmic in the number of qubits for interactions with α≤D. As a corollary, we show that power-law systems with α≤D are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable. Complementarily, we develop a new technique to give a general lower bound, linear in the size of the system, on the time required to implement the QFT and the fanout gate in systems that are constrained by a linear light cone. This allows us to prove an asymptotically tighter lower bound for long-range systems than is possible with previously available techniques. 

%B Phys. Rev. Research %V 4 %8 10/27/2022 %G eng %U https://arxiv.org/abs/2007.00662 %N L042016 %R https://doi.org/10.1103/PhysRevResearch.4.L042016 %0 Journal Article %D 2021 %T Clustering of steady-state correlations in open systems with long-range interactions %A Andrew Y. Guo %A Simon Lieu %A Minh C. Tran %A Alexey V. Gorshkov %X

Lieb-Robinson bounds are powerful analytical tools for constraining the dynamic and static properties of non-relativistic quantum systems. Recently, a complete picture for closed systems that evolve unitarily in time has been achieved. In experimental systems, however, interactions with the environment cannot generally be ignored, and the extension of Lieb-Robinson bounds to dissipative systems which evolve non-unitarily in time remains an open challenge. In this work, we prove two Lieb-Robinson bounds that constrain the dynamics of open quantum systems with long-range interactions that decay as a power-law in the distance between particles. Using a combination of these Lieb-Robinson bounds and mixing bounds which arise from "reversibility" -- naturally satisfied for thermal environments -- we prove the clustering of correlations in the steady states of open quantum systems with long-range interactions. Our work provides an initial step towards constraining the steady-state entanglement structure for a broad class of experimental platforms, and we highlight several open directions regarding the application of Lieb-Robinson bounds to dissipative systems.

%8 10/28/2021 %G eng %U https://arxiv.org/abs/2110.15368 %0 Journal Article %D 2021 %T The Lieb-Robinson light cone for power-law interactions %A Minh C. Tran %A Andrew Y. Guo %A Christopher L. Baldwin %A Adam Ehrenberg %A Alexey V. Gorshkov %A Andrew Lucas %X

The Lieb-Robinson theorem states that information propagates with a finite velocity in quantum systems on a lattice with nearest-neighbor interactions. What are the speed limits on information propagation in quantum systems with power-law interactions, which decay as 1/rα at distance r? Here, we present a definitive answer to this question for all exponents α>2d and all spatial dimensions d. Schematically, information takes time at least rmin{1,α−2d} to propagate a distance~r. As recent state transfer protocols saturate this bound, our work closes a decades-long hunt for optimal Lieb-Robinson bounds on quantum information dynamics with power-law interactions.

%8 3/29/2021 %G eng %U https://arxiv.org/abs/2103.15828 %0 Journal Article %J Physical Review X %D 2020 %T Hierarchy of linear light cones with long-range interactions %A Minh C. Tran %A Chi-Fang Chen %A Adam Ehrenberg %A Andrew Y. Guo %A Abhinav Deshpande %A Yifan Hong %A Zhe-Xuan Gong %A Alexey V. Gorshkov %A Andrew Lucas %X

In quantum many-body systems with local interactions, quantum information and entanglement cannot spread outside of a "linear light cone," which expands at an emergent velocity analogous to the speed of light. Yet most non-relativistic physical systems realized in nature have long-range interactions: two degrees of freedom separated by a distance r interact with potential energy V(r)∝1/rα. In systems with long-range interactions, we rigorously establish a hierarchy of linear light cones: at the same α, some quantum information processing tasks are constrained by a linear light cone while others are not. In one spatial dimension, commutators of local operators ⟨ψ|[Ox(t),Oy]|ψ⟩ are negligible in every state |ψ⟩ when |x−y|≳vt, where v is finite when α>3 (Lieb-Robinson light cone); in a typical state |ψ⟩ drawn from the infinite temperature ensemble, v is finite when α>52 (Frobenius light cone); in non-interacting systems, v is finite in every state when α>2 (free light cone). These bounds apply to time-dependent systems and are optimal up to subalgebraic improvements. Our theorems regarding the Lieb-Robinson and free light cones, and their tightness, also generalize to arbitrary dimensions. We discuss the implications of our bounds on the growth of connected correlators and of topological order, the clustering of correlations in gapped systems, and the digital simulation of systems with long-range interactions. In addition, we show that quantum state transfer and many-body quantum chaos are bounded by the Frobenius light cone, and therefore are poorly constrained by all Lieb-Robinson bounds.

%B Physical Review X %V 10 %8 5/29/2020 %G eng %U https://arxiv.org/abs/2001.11509 %N 031009 %R https://doi.org/10.1103/PhysRevX.10.031009 %0 Journal Article %D 2020 %T Optimal state transfer and entanglement generation in power-law interacting systems %A Minh C. Tran %A Abhinav Deshpande %A Andrew Y. Guo %A Andrew Lucas %A Alexey V. Gorshkov %X

We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law (1/rα) interactions. For all power-law exponents α between d and 2d+1, where d is the dimension of the system, the protocol yields a polynomial speedup for α>2d and a superpolynomial speedup for α≤2d, compared to the state of the art. For all α>d, the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states. 

%8 10/6/2020 %G eng %U https://arxiv.org/abs/2010.02930 %0 Journal Article %J Physical Review A %D 2020 %T Signaling and Scrambling with Strongly Long-Range Interactions %A Andrew Y. Guo %A Minh C. Tran %A Andrew M. Childs %A Alexey V. Gorshkov %A Zhe-Xuan Gong %X

Strongly long-range interacting quantum systems---those with interactions decaying as a power-law 1/rα in the distance r on a D-dimensional lattice for α≤D---have received significant interest in recent years. They are present in leading experimental platforms for quantum computation and simulation, as well as in theoretical models of quantum information scrambling and fast entanglement creation. Since no notion of locality is expected in such systems, a general understanding of their dynamics is lacking. As a first step towards rectifying this problem, we prove two new Lieb-Robinson-type bounds that constrain the time for signaling and scrambling in strongly long-range interacting systems, for which no tight bounds were previously known. Our first bound applies to systems mappable to free-particle Hamiltonians with long-range hopping, and is saturable for α≤D/2. Our second bound pertains to generic long-range interacting spin Hamiltonians, and leads to a tight lower bound for the signaling time to extensive subsets of the system for all α<D. This result also lower-bounds the scrambling time, and suggests a path towards achieving a tight scrambling bound that can prove the long-standing fast scrambling conjecture. 

%B Physical Review A %V 102 %8 7/8/2020 %G eng %U https://arxiv.org/abs/1906.02662 %N 010401(R) %R https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.010401 %0 Journal Article %J Phys. Rev. X 9, 031006 %D 2019 %T Locality and digital quantum simulation of power-law interactions %A Minh C. Tran %A Andrew Y. Guo %A Yuan Su %A James R. Garrison %A Zachary Eldredge %A Michael Foss-Feig %A Andrew M. Childs %A Alexey V. Gorshkov %X

The propagation of information in non-relativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance r as a power law, 1/rα. The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah et al. [arXiv:1801.03922]. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when α>3D (where D is the number of dimensions).

%B Phys. Rev. X 9, 031006 %V 9 %8 07/10/2019 %G eng %U https://arxiv.org/abs/1808.05225 %N 031006 %R https://doi.org/10.1103/PhysRevX.9.031006 %0 Journal Article %J Phys. Rev. A %D 2019 %T Locality and Heating in Periodically Driven, Power-law Interacting Systems %A Minh C. Tran %A Adam Ehrenberg %A Andrew Y. Guo %A Paraj Titum %A Dmitry A. Abanin %A Alexey V. Gorshkov %X

We study the heating time in periodically driven D-dimensional systems with interactions that decay with the distance r as a power-law 1/rα. Using linear response theory, we show that the heating time is exponentially long as a function of the drive frequency for α>D. For systems that may not obey linear response theory, we use a more general Magnus-like expansion to show the existence of quasi-conserved observables, which imply exponentially long heating time, for α>2D. We also generalize a number of recent state-of-the-art Lieb-Robinson bounds for power-law systems from two-body interactions to k-body interactions and thereby obtain a longer heating time than previously established in the literature. Additionally, we conjecture that the gap between the results from the linear response theory and the Magnus-like expansion does not have physical implications, but is, rather, due to the lack of tight Lieb-Robinson bounds for power-law interactions. We show that the gap vanishes in the presence of a hypothetical, tight bound. 

%B Phys. Rev. A %V 100 %8 2019/11/12 %G eng %U https://arxiv.org/abs/1908.02773 %N 052103 %R https://doi.org/10.1103/PhysRevA.100.052103