%0 Journal Article %J Physical Review Letters %D 2016 %T Effective Field Theory for Rydberg Polaritons %A Michael Gullans %A J. D. Thompson %A Y. Wang %A Q. -Y. Liang %A V. Vuletic %A M. D. Lukin %A Alexey V. Gorshkov %X

We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and determine the photon number at which the EFT description breaks down. We find good agreement throughout between the predictions of EFT and numerical simulations of the exact two and three photon wavefunction transmission.

%B Physical Review Letters %V 117 %P 113601 %8 2016/09/09 %G eng %U http://arxiv.org/abs/1605.05651 %N 11 %R http://dx.doi.org/10.1103/PhysRevLett.117.113601 %0 Journal Article %J Physical Review Letters %D 2012 %T Nanoplasmonic Lattices for Ultracold atoms %A Michael Gullans %A T. Tiecke %A D. E. Chang %A J. Feist %A J. D. Thompson %A J. I. Cirac %A P. Zoller %A M. D. Lukin %X We propose to use sub-wavelength confinement of light associated with the near field of plasmonic systems to create nanoscale optical lattices for ultracold atoms. Our approach combines the unique coherence properties of isolated atoms with the sub-wavelength manipulation and strong light-matter interaction associated with nano-plasmonic systems. It allows one to considerably increase the energy scales in the realization of Hubbard models and to engineer effective long-range interactions in coherent and dissipative many-body dynamics. Realistic imperfections and potential applications are discussed. %B Physical Review Letters %V 109 %8 2012/12/6 %G eng %U http://arxiv.org/abs/1208.6293v3 %N 23 %! Phys. Rev. Lett. %R 10.1103/PhysRevLett.109.235309