%0 Journal Article %D 2021 %T Clustering of steady-state correlations in open systems with long-range interactions %A Andrew Y. Guo %A Simon Lieu %A Minh C. Tran %A Alexey V. Gorshkov %X

Lieb-Robinson bounds are powerful analytical tools for constraining the dynamic and static properties of non-relativistic quantum systems. Recently, a complete picture for closed systems that evolve unitarily in time has been achieved. In experimental systems, however, interactions with the environment cannot generally be ignored, and the extension of Lieb-Robinson bounds to dissipative systems which evolve non-unitarily in time remains an open challenge. In this work, we prove two Lieb-Robinson bounds that constrain the dynamics of open quantum systems with long-range interactions that decay as a power-law in the distance between particles. Using a combination of these Lieb-Robinson bounds and mixing bounds which arise from "reversibility" -- naturally satisfied for thermal environments -- we prove the clustering of correlations in the steady states of open quantum systems with long-range interactions. Our work provides an initial step towards constraining the steady-state entanglement structure for a broad class of experimental platforms, and we highlight several open directions regarding the application of Lieb-Robinson bounds to dissipative systems.

%8 10/28/2021 %G eng %U https://arxiv.org/abs/2110.15368