%0 Journal Article %J Physical Review Letters %D 2015 %T Coulomb bound states of strongly interacting photons %A Mohammad F. Maghrebi %A Michael Gullans %A P. Bienias %A S. Choi %A I. Martin %A O. Firstenberg %A M. D. Lukin %A H. P. Büchler %A Alexey V. Gorshkov %X We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms. %B Physical Review Letters %V 115 %P 123601 %8 2015/09/16 %G eng %U http://arxiv.org/abs/1505.03859v1 %N 12 %! Phys. Rev. Lett. %R 10.1103/PhysRevLett.115.123601