%0 Journal Article %J Journal of Physics B: Atomic, Molecular and Optical Physics %D 2005 %T Scalable register initialization for quantum computing in an optical lattice %A Gavin K. Brennen %A Guido Pupillo %A Ana Maria Rey %A Charles W. Clark %A Carl J. Williams %X The Mott insulator state created by loading an atomic Bose-Einstein condensate (BEC) into an optical lattice may be used as a means to prepare a register of atomic qubits in a quantum computer. Such architecture requires a lattice commensurately filled with atoms, which corresponds to the insulator state only in the limit of zero inter-well tunneling. We show that a lattice with spatial inhomogeneity created by a quadratic magnetic trapping potential can be used to isolate a subspace in the center which is impervious to hole-hoping. Components of the wavefunction with more than one atom in any well can be projected out by selective measurement on a molecular photo-associative transition. Maintaining the molecular coupling induces a quantum Zeno effect that can sustain a commensurately filled register for the duration of a quantum computation. %B Journal of Physics B: Atomic, Molecular and Optical Physics %V 38 %P 1687 - 1694 %8 2005/06/14 %G eng %U http://arxiv.org/abs/quant-ph/0312069v1 %N 11 %! J. Phys. B: At. Mol. Opt. Phys. %R 10.1088/0953-4075/38/11/010