TY - JOUR T1 - Non-Abelian symmetry can increase entanglement entropy JF - Physical Review B Y1 - 2023 A1 - Shayan Majidy A1 - Aleksander Lasek A1 - David A. Huse A1 - Nicole Yunger Halpern AB -

The pillars of quantum theory include entanglement and operators' failure to commute. The Page curve quantifies the bipartite entanglement of a many-body system in a random pure state. This entanglement is known to decrease if one constrains extensive observables that commute with each other (Abelian ``charges''). Non-Abelian charges, which fail to commute with each other, are of current interest in quantum thermodynamics. For example, noncommuting charges were shown to reduce entropy-production rates and may enhance finite-size deviations from eigenstate thermalization. Bridging quantum thermodynamics to many-body physics, we quantify the effects of charges' noncommutation -- of a symmetry's non-Abelian nature -- on Page curves. First, we construct two models that are closely analogous but differ in whether their charges commute. We show analytically and numerically that the noncommuting-charge case has more entanglement. Hence charges' noncommutation can promote entanglement.

VL - 107 UR - https://arxiv.org/abs/2209.14303 U5 - 10.1103/physrevb.107.045102 ER - TY - JOUR T1 - Infinite-randomness criticality in monitored quantum dynamics with static disorder Y1 - 2022 A1 - Aidan Zabalo A1 - Justin H. Wilson A1 - Michael J. Gullans A1 - Romain Vasseur A1 - Sarang Gopalakrishnan A1 - David A. Huse A1 - J. H. Pixley AB -

We consider a model of monitored quantum dynamics with quenched spatial randomness: specifically, random quantum circuits with spatially varying measurement rates. These circuits undergo a measurement-induced phase transition (MIPT) in their entanglement structure, but the nature of the critical point differs drastically from the case with constant measurement rate. In particular, at the critical measurement rate, we find that the entanglement of a subsystem of size ℓ scales as S∼ℓ√; moreover, the dynamical critical exponent z=∞. The MIPT is flanked by Griffiths phases with continuously varying dynamical exponents. We argue for this infinite-randomness scenario on general grounds and present numerical evidence that it captures some features of the universal critical properties of MIPT using large-scale simulations of Clifford circuits. These findings demonstrate that the relevance and irrelevance of perturbations to the MIPT can naturally be interpreted using a powerful heuristic known as the Harris criterion. 

UR - https://arxiv.org/abs/2205.14002 ER - TY - JOUR T1 - Operator Scaling Dimensions and Multifractality at Measurement-Induced Transitions JF - Physical Review Letters Y1 - 2022 A1 - Aidan Zabalo A1 - Michael Gullans A1 - Justin H. Wilson A1 - Romain Vasseur A1 - Andreas W. W. Ludwig A1 - Sarang Gopalakrishnan A1 - David A. Huse A1 - J. H. Pixley AB -

Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively similar values of the critical exponents, making it unclear if there is only one underlying universality class. Here, we directly probe the properties of the conformal field theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical points. Our results provide convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation transition for qudits in the limit of large onsite Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.

VL - 128 UR - https://arxiv.org/abs/2107.03393 U5 - 10.1103/physrevlett.128.050602 ER - TY - JOUR T1 - Observation of measurement-induced quantum phases in a trapped-ion quantum computer Y1 - 2021 A1 - Crystal Noel A1 - Pradeep Niroula A1 - Daiwei Zhu A1 - Andrew Risinger A1 - Laird Egan A1 - Debopriyo Biswas A1 - Marko Cetina A1 - Alexey V. Gorshkov A1 - Michael Gullans A1 - David A. Huse A1 - Christopher Monroe AB -

Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.

UR - https://arxiv.org/abs/2106.05881 ER - TY - JOUR T1 - Quantum coding with low-depth random circuits Y1 - 2020 A1 - Michael Gullans A1 - Stefan Krastanov A1 - David A. Huse A1 - Liang Jiang A1 - Steven T. Flammia AB -

Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D≥1 spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O(logN) random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the channel capacity for any D. Previous results on random circuits have only shown that O(N1/D) depth suffices or that O(log3N) depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the channel capacity converge to zero with N. We find that the requisite depth scales like O(logN) only for dimensions D≥2, and that random circuits require O(N−−√) depth for D=1. Finally, we introduce an "expurgation" algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sub-logarithmic depth in D≥2 spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated random circuits in D=2 dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. 

UR - https://arxiv.org/abs/2010.09775 ER - TY - JOUR T1 - Many-body localization in a quantum simulator with programmable random disorder JF - Nature Physics Y1 - 2016 A1 - Jacob Smith A1 - Aaron Lee A1 - Philip Richerme A1 - Brian Neyenhuis A1 - Paul W. Hess A1 - Philipp Hauke A1 - Markus Heyl A1 - David A. Huse A1 - Christopher Monroe AB -

When a system thermalizes it loses all local memory of its initial conditions. This is a general feature of open systems and is well described by equilibrium statistical mechanics. Even within a closed (or reversible) quantum system, where unitary time evolution retains all information about its initial state, subsystems can still thermalize using the rest of the system as an effective heat bath. Exceptions to quantum thermalization have been predicted and observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. The prediction of many-body localization (MBL), in which disordered quantum systems can fail to thermalize in spite of strong interactions and high excitation energy, was therefore surprising and has attracted considerable theoretical attention. Here we experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmably random disorder to ten spins initialized far from equilibrium. We observe the essential signatures of MBL: memory retention of the initial state, a Poissonian distribution of energy level spacings, and entanglement growth in the system at long times. Our platform can be scaled to higher numbers of spins, where detailed modeling of MBL becomes impossible due to the complexity of representing such entangled quantum states. Moreover, the high degree of control in our experiment may guide the use of MBL states as potential quantum memories in naturally disordered quantum systems.

UR - http://arxiv.org/abs/1508.07026v1 U5 - 10.1038/nphys3783 ER -