TY - JOUR T1 - Singularities in nearly-uniform 1D condensates due to quantum diffusion Y1 - 2021 A1 - Christopher L. Baldwin A1 - P. Bienias A1 - Alexey V. Gorshkov A1 - Michael Gullans A1 - M. Maghrebi AB -

Dissipative systems can often exhibit wavelength-dependent loss rates. One prominent example is Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a leading candidate for studying the physics of interacting photons and also hold promise as a platform for quantum information. In this system, dissipation is in the form of quantum diffusion, i.e., proportional to k2 (k being the wavevector) and vanishing at long wavelengths as k→0. Here, we show that one-dimensional condensates subject to this type of loss are unstable to long-wavelength density fluctuations in an unusual manner: after a prolonged period in which the condensate appears to relax to a uniform state, local depleted regions quickly form and spread ballistically throughout the system. We connect this behavior to the leading-order equation for the nearly-uniform condensate -- a dispersive analogue to the Kardar-Parisi-Zhang (KPZ) equation -- which develops singularities in finite time. Furthermore, we show that the wavefronts of the depleted regions are described by purely dissipative solitons within a pair of hydrodynamic equations, with no counterpart in lossless condensates. We close by discussing conditions under which such singularities and the resulting solitons can be physically realized.

UR - https://arxiv.org/abs/2103.06293 ER - TY - JOUR T1 - On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble Y1 - 2020 A1 - Dalia P. Ornelas-Huerta A1 - Alexander N. Craddock A1 - Elizabeth A. Goldschmidt A1 - Andrew J. Hachtel A1 - Yidan Wang A1 - P. Bienias A1 - Alexey V. Gorshkov A1 - Steve L. Rolston A1 - James V. Porto AB -

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)×10−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources. 

UR - https://arxiv.org/abs/2003.02202 ER - TY - JOUR T1 - Floquet engineering of optical lattices with spatial features and periodicity below the diffraction limit Y1 - 2019 A1 - S. Subhankar A1 - P. Bienias A1 - P. Titum A1 - T-C. Tsui A1 - Y. Wang A1 - Alexey V. Gorshkov A1 - S. L. Rolston A1 - J. V. Porto AB -

Floquet engineering or coherent time periodic driving of quantum systems has been successfully used to synthesize Hamiltonians with novel properties. In ultracold atomic systems, this has led to experimental realizations of artificial gauge fields, topological band structures, and observation of dynamical localization, to name just a few. Here we present a Floquet-based framework to stroboscopically engineer Hamiltonians with spatial features and periodicity below the diffraction limit of light used to create them by time-averaging over various configurations of a 1D optical Kronig-Penney (KP) lattice. The KP potential is a lattice of narrow subwavelength barriers spaced by half the optical wavelength (λ/2) and arises from the non-linear optical response of the atomic dark state. Stroboscopic control over the strength and position of this lattice requires time-dependent adiabatic manipulation of the dark state spin composition. We investigate adiabaticity requirements and shape our time-dependent light fields to respect the requirements. We apply this framework to show that a λ/4-spaced lattice can be synthesized using realistic experimental parameters as an example, discuss mechanisms that limit lifetimes in these lattices, explore candidate systems and their limitations, and treat adiabatic loading into the ground band of these lattices.

UR - https://arxiv.org/abs/1906.07646 ER - TY - JOUR T1 - Coherent optical nano-tweezers for ultra-cold atoms Y1 - 2018 A1 - P. Bienias A1 - S. Subhankar A1 - Y. Wang A1 - T-C Tsui A1 - F. Jendrzejewski A1 - T. Tiecke A1 - G. Juzeliūnas A1 - L. Jiang A1 - S. L. Rolston A1 - J. V. Porto A1 - Alexey V. Gorshkov AB -

There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.

UR - https://arxiv.org/abs/1808.02487 ER - TY - JOUR T1 - Coulomb bound states of strongly interacting photons JF - Physical Review Letters Y1 - 2015 A1 - Mohammad F. Maghrebi A1 - Michael Gullans A1 - P. Bienias A1 - S. Choi A1 - I. Martin A1 - O. Firstenberg A1 - M. D. Lukin A1 - H. P. Büchler A1 - Alexey V. Gorshkov AB - We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms. VL - 115 U4 - 123601 UR - http://arxiv.org/abs/1505.03859v1 CP - 12 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.115.123601 ER - TY - JOUR T1 - Scattering resonances and bound states for strongly interacting Rydberg polaritons JF - Physical Review A Y1 - 2014 A1 - P. Bienias A1 - S. Choi A1 - O. Firstenberg A1 - Mohammad F. Maghrebi A1 - Michael Gullans A1 - M. D. Lukin A1 - Alexey V. Gorshkov A1 - H. P. Büchler AB - We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton-polariton interactions are repulsive. Furthermore, in the regime of attractive interactions, we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body Hamiltonian. This theoretical platform is applicable to ongoing experiments. VL - 90 UR - http://arxiv.org/abs/1402.7333v1 CP - 5 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.90.053804 ER -