TY - JOUR T1 - Hierarchy of linear light cones with long-range interactions JF - Physical Review X Y1 - 2020 A1 - Minh C. Tran A1 - Chi-Fang Chen A1 - Adam Ehrenberg A1 - Andrew Y. Guo A1 - Abhinav Deshpande A1 - Yifan Hong A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov A1 - Andrew Lucas AB -

In quantum many-body systems with local interactions, quantum information and entanglement cannot spread outside of a "linear light cone," which expands at an emergent velocity analogous to the speed of light. Yet most non-relativistic physical systems realized in nature have long-range interactions: two degrees of freedom separated by a distance r interact with potential energy V(r)∝1/rα. In systems with long-range interactions, we rigorously establish a hierarchy of linear light cones: at the same α, some quantum information processing tasks are constrained by a linear light cone while others are not. In one spatial dimension, commutators of local operators ⟨ψ|[Ox(t),Oy]|ψ⟩ are negligible in every state |ψ⟩ when |x−y|≳vt, where v is finite when α>3 (Lieb-Robinson light cone); in a typical state |ψ⟩ drawn from the infinite temperature ensemble, v is finite when α>52 (Frobenius light cone); in non-interacting systems, v is finite in every state when α>2 (free light cone). These bounds apply to time-dependent systems and are optimal up to subalgebraic improvements. Our theorems regarding the Lieb-Robinson and free light cones, and their tightness, also generalize to arbitrary dimensions. We discuss the implications of our bounds on the growth of connected correlators and of topological order, the clustering of correlations in gapped systems, and the digital simulation of systems with long-range interactions. In addition, we show that quantum state transfer and many-body quantum chaos are bounded by the Frobenius light cone, and therefore are poorly constrained by all Lieb-Robinson bounds.

VL - 10 UR - https://arxiv.org/abs/2001.11509 CP - 031009 U5 - https://doi.org/10.1103/PhysRevX.10.031009 ER - TY - JOUR T1 - Signaling and Scrambling with Strongly Long-Range Interactions JF - Physical Review A Y1 - 2020 A1 - Andrew Y. Guo A1 - Minh C. Tran A1 - Andrew M. Childs A1 - Alexey V. Gorshkov A1 - Zhe-Xuan Gong AB -

Strongly long-range interacting quantum systems---those with interactions decaying as a power-law 1/rα in the distance r on a D-dimensional lattice for α≤D---have received significant interest in recent years. They are present in leading experimental platforms for quantum computation and simulation, as well as in theoretical models of quantum information scrambling and fast entanglement creation. Since no notion of locality is expected in such systems, a general understanding of their dynamics is lacking. As a first step towards rectifying this problem, we prove two new Lieb-Robinson-type bounds that constrain the time for signaling and scrambling in strongly long-range interacting systems, for which no tight bounds were previously known. Our first bound applies to systems mappable to free-particle Hamiltonians with long-range hopping, and is saturable for α≤D/2. Our second bound pertains to generic long-range interacting spin Hamiltonians, and leads to a tight lower bound for the signaling time to extensive subsets of the system for all α<D. This result also lower-bounds the scrambling time, and suggests a path towards achieving a tight scrambling bound that can prove the long-standing fast scrambling conjecture. 

VL - 102 UR - https://arxiv.org/abs/1906.02662 CP - 010401(R) U5 - https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.010401 ER - TY - JOUR T1 - Probing ground-state phase transitions through quench dynamics JF - Phys. Rev. Lett. Y1 - 2019 A1 - Paraj Titum A1 - Joseph T. Iosue A1 - James R. Garrison A1 - Alexey V. Gorshkov A1 - Zhe-Xuan Gong AB -

The study of quantum phase transitions requires the preparation of a many-body system near its ground state, a challenging task for many experimental systems. The measurement of quench dynamics, on the other hand, is now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of quantum phase transitions can be probed directly with quench dynamics in integrable and nearly integrable systems. As a paradigmatic example, we study global quench dynamics in a transverse-field Ising model with either short-range or long-range interactions. When the model is integrable, we discover a new dynamical critical point with a non-analytic signature in the short-range correlators. The location of the dynamical critical point matches that of the quantum critical point and can be identified using a finite-time scaling method. We extend this scaling picture to systems near integrability and demonstrate the continued existence of a dynamical critical point detectable at prethermal time scales. Therefore, our method can be used to approximately locate the quantum critical point. The scaling method is also relevant to experiments with finite time and system size, and our predictions are testable in near-term experiments with trapped ions and Rydberg atoms.

VL - 123 UR - https://arxiv.org/abs/1809.06377 CP - 115701 U5 - https://doi.org/10.1103/PhysRevLett.123.115701 ER - TY - JOUR T1 - Asymmetric Particle Transport and Light-Cone Dynamics Induced by Anyonic Statistics JF - Phys. Rev. Lett Y1 - 2018 A1 - Fangli Liu A1 - James R. Garrison A1 - Dong-Ling Deng A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov AB -

We study the non-equilibrium dynamics of Abelian anyons in a one-dimensional system. We find that the interplay of anyonic statistics and interactions gives rise to spatially asymmetric particle transport together with a novel dynamical symmetry that depends on the anyonic statistical angle and the sign of interactions. Moreover, we show that anyonic statistics induces asymmetric spreading of quantum information, characterized by asymmetric light cones of out-of-time-ordered correlators. Such asymmetric dynamics is in sharp contrast with the dynamics of conventional fermions or bosons, where both the transport and information dynamics are spatially symmetric. We further discuss experiments with cold atoms where the predicted phenomena can be observed using state-of-the-art technologies. Our results pave the way toward experimentally probing anyonic statistics through non-equilibrium dynamics.

VL - 121 UR - https://arxiv.org/abs/1809.02614 CP - 250404 U5 - https://doi.org/10.1103/PhysRevLett.121.250404 ER - TY - JOUR T1 - Entanglement area laws for long-range interacting systems JF - Physical Review Letters Y1 - 2017 A1 - Zhe-Xuan Gong A1 - Michael Foss-Feig A1 - Fernando G. S. L. Brandão A1 - Alexey V. Gorshkov AB -

We prove that the entanglement entropy of any state evolved under an arbitrary 1/rα long-range-interacting D-dimensional lattice spin Hamiltonian cannot change faster than a rate proportional to the boundary area for any α > D + 1. We also prove that for any α > 2D + 2, the ground state of such a Hamiltonian satisfies the entanglement area law if it can be transformed along a gapped adiabatic path into a ground state known to satisfy the area law. These results significantly generalize their existing counterparts for short-range interacting systems, and are useful for identifying dynamical phase transitions and quantum phase transitions in the presence of long-range interactions.

VL - 119 U4 - 050501 UR - https://arxiv.org/abs/1702.05368 CP - 5 U5 - 10.1103/PhysRevLett.119.050501 ER - TY - JOUR T1 - Fast State Transfer and Entanglement Renormalization Using Long-Range Interactions JF - Physical Review Letters Y1 - 2017 A1 - Zachary Eldredge A1 - Zhe-Xuan Gong A1 - Ali Hamed Moosavian A1 - Michael Foss-Feig A1 - Alexey V. Gorshkov AB -

In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speed-up possible is an open question. In this paper, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with strength bounded by 1/rα. If α<d, the state transfer time is asymptotically independent of L; if α=d, the time is logarithmic in distance L; if d<α<d+1, transfer occurs in time proportional to Lαd; and if αd+1, it occurs in time proportional to L. We then use this protocol to upper bound the time required to create a state specified by a MERA (multiscale entanglement renormalization ansatz) tensor network, and show that, if the linear size of the MERA state is L, then it can be created in time that scales with L identically to state transfer up to multiplicative logarithmic corrections.

VL - 119 U4 - 170503 UR - https://arxiv.org/abs/1612.02442 CP - 17 U5 - 10.1103/PhysRevLett.119.170503 ER - TY - JOUR T1 - Lieb-Robinson bounds on n-partite connected correlation functions JF - Phys. Rev. A 96, 052334 Y1 - 2017 A1 - Minh C. Tran A1 - James R. Garrison A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov AB -

Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an n-partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n-partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems.

UR - https://arxiv.org/abs/1705.04355 U5 - https://doi.org/10.1103/PhysRevA.96.052334 ER - TY - JOUR T1 - Lieb-Robinson bounds on n-partite connected correlations JF - Physical Review A Y1 - 2017 A1 - Minh C. Tran A1 - James R. Garrison A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov AB -

Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an n-partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n-partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems.

VL - 96 UR - https://arxiv.org/abs/1705.04355 CP - 5 U5 - 10.1103/PhysRevA.96.052334 ER - TY - JOUR T1 - Causality and quantum criticality in long-range lattice models JF - Physical Review B Y1 - 2016 A1 - Mohammad F. Maghrebi A1 - Zhe-Xuan Gong A1 - Michael Foss-Feig A1 - Alexey V. Gorshkov VL - 93 U4 - 125128 UR - http://link.aps.org/doi/10.1103/PhysRevB.93.125128 U5 - 10.1103/PhysRevB.93.125128 ER - TY - JOUR T1 - Causality and quantum criticality with long-range interactions JF - Physical Review B Y1 - 2016 A1 - Mohammad F. Maghrebi A1 - Zhe-Xuan Gong A1 - Michael Foss-Feig A1 - Alexey V. Gorshkov AB - Quantum lattice systems with long-range interactions often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transverse-field Ising model and a fermionic model with long-range interactions, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of long-range interactions, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent. VL - 92 U4 - 125128 UR - http://arxiv.org/abs/1508.00906 CP - 12 U5 - 10.1103/PhysRevB.93.125128 ER - TY - JOUR T1 - Entanglement and spin-squeezing without infinite-range interactions Y1 - 2016 A1 - Michael Foss-Feig A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov A1 - Charles W. Clark AB -

Infinite-range interactions are known to facilitate the production of highly entangled states with applications in quantum information and metrology. However, many experimental systems have interactions that decay with distance, and the achievable benefits in this context are much less clear. Combining recent exact solutions with a controlled expansion in the system size, we analyze quench dynamics in Ising models with power-law (1/r α ) interactions in D dimensions, thereby expanding the understanding of spin squeezing into a broad and experimentally relevant context. In spatially homogeneous systems, we show that for small α the scaling of squeezing with system size is identical to the infinite-range (α = 0) case. This indifference to the interaction range persists up to a critical value α = 2D/3, above which squeezing degrades continuously. Boundaryinduced inhomogeneities present in most experimental systems modify this picture, but it nevertheless remains qualitatively correct for finite-sized systems.

UR - https://arxiv.org/abs/1612.07805 ER - TY - JOUR T1 - Kaleidoscope of quantum phases in a long-range interacting spin-1 chain JF - Physical Review B Y1 - 2016 A1 - Zhe-Xuan Gong A1 - Mohammad F. Maghrebi A1 - Anzi Hu A1 - Michael Foss-Feig A1 - Philip Richerme A1 - Christopher Monroe A1 - Alexey V. Gorshkov AB - Motivated by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1/rα, using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (non-frustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α≲3, long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U(1) continuous symmetry, and introduce an exotic tricritical point with no direct parallel in short-range interacting spin chains. We show that the main signatures of all five phases found could be observed experimentally in the near future. VL - 93 U4 - 205115 UR - http://arxiv.org/abs/1510.02108 CP - 20 U5 - http://dx.doi.org/10.1103/PhysRevB.93.205115 ER - TY - JOUR T1 - Steady-state superradiance with Rydberg polaritons JF - arXiv:1611.00797 Y1 - 2016 A1 - Zhe-Xuan Gong A1 - Minghui Xu A1 - Michael Foss-Feig A1 - James K. Thompson A1 - Ana Maria Rey A1 - Murray Holland A1 - Alexey V. Gorshkov AB -

A steady-state superradiant laser can be used to generate ultranarrow-linewidth light, and thus has important applications in the fields of quantum information and precision metrology. However, the light produced by such a laser is still essentially classical. Here, we show that the introduction of a Rydberg medium into a cavity containing atoms with a narrow optical transition can lead to the steady-state superradiant emission of ultranarrow-linewidth nonclassical light. The cavity nonlinearity induced by the Rydberg medium strongly modifies the superradiance threshold, and leads to a Mollow triplet in the cavity output spectrumthis behavior can be understood as an unusual analogue of resonance fluorescence. The cavity output spectrum has an extremely sharp central peak, with a linewidth that can be far narrower than that of a classical superradiant laser. This unprecedented spectral sharpness, together with the nonclassical nature of the light, could lead to new applications in which spectrally pure quantum light is desired.

UR - https://arxiv.org/abs/1611.00797 ER - TY - JOUR T1 - Topological phases with long-range interactions JF - Physical Review B Y1 - 2016 A1 - Zhe-Xuan Gong A1 - Mohammad F. Maghrebi A1 - Anzi Hu A1 - Michael L. Wall A1 - Michael Foss-Feig A1 - Alexey V. Gorshkov AB - Topological phases of matter are primarily studied in quantum many-body systems with short-range interactions. Whether various topological phases can survive in the presence of long-range interactions, however, is largely unknown. Here we show that a paradigmatic example of a symmetry-protected topological phase, the Haldane phase of an antiferromagnetic spin-1 chain, surprisingly remains intact in the presence of arbitrarily slowly decaying power-law interactions. The influence of long-range interactions on the topological order is largely quantitative, and we expect similar results for more general systems. Our conclusions are based on large-scale matrix-product-state simulations and two complementary effective-field-theory calculations. The striking agreement between the numerical and analytical results rules out finite-size effects. The topological phase considered here should be experimentally observable in a recently developed trapped-ion quantum simulator. VL - 93 U4 - 041102 UR - http://arxiv.org/abs/1505.03146 CP - 4 U5 - 10.1103/PhysRevB.93.041102 ER - TY - JOUR T1 - Continuous symmetry breaking and a new universality class in 1D long-range interacting quantum systems Y1 - 2015 A1 - Mohammad F. Maghrebi A1 - Zhe-Xuan Gong A1 - Alexey V. Gorshkov AB - Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-Wagner theorem for short-range interactions, may take place in the presence of slowly decaying long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-range interacting spin chain with U(1) symmetry and power-law interactions V(r)∼1/rα, directly relevant to ion-trap experiments. Using bosonization and renormalization group theory, we find CSB for α smaller than a critical exponent αc(≤3) depending on the microscopic parameters of the model. Furthermore, the transition from the gapless XY phase to the gapless CSB phase is mediated by the breaking of conformal symmetry due to long-range interactions, and is described by a new universality class akin to the Berezinskii-Kosterlitz-Thouless transition. Our analytical findings are in good agreement with a numerical calculation. Signatures of the CSB phase should be accessible in existing trapped-ion experiments. UR - http://arxiv.org/abs/1510.01325 ER - TY - JOUR T1 - Nearly-linear light cones in long-range interacting quantum systems JF - Physical Review Letters Y1 - 2015 A1 - Michael Foss-Feig A1 - Zhe-Xuan Gong A1 - Charles W. Clark A1 - Alexey V. Gorshkov AB - In non-relativistic quantum theories with short-range Hamiltonians, a velocity $v$ can be chosen such that the influence of any local perturbation is approximately confined to within a distance $r$ until a time $t \sim r/v$, thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-law ($1/r^{\alpha}$) interactions, when $\alpha$ exceeds the dimension $D$, an analogous bound confines influences to within a distance $r$ only until a time $t\sim(\alpha/v)\log r$, suggesting that the velocity, as calculated from the slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-law interacting systems are algebraic for $\alpha>2D$, becoming linear as $\alpha\rightarrow\infty$. Our results impose strong new constraints on the growth of correlations and the production of entangled states in a variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems. VL - 114 U4 - 157201 UR - http://arxiv.org/abs/1410.3466v1 CP - 15 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.114.157201 ER - TY - JOUR T1 - Non-local propagation of correlations in long-range interacting quantum systems JF - Nature Y1 - 2014 A1 - Philip Richerme A1 - Zhe-Xuan Gong A1 - Aaron Lee A1 - Crystal Senko A1 - Jacob Smith A1 - Michael Foss-Feig A1 - Spyridon Michalakis A1 - Alexey V. Gorshkov A1 - Christopher Monroe AB - The maximum speed with which information can propagate in a quantum many-body system directly affects how quickly disparate parts of the system can become correlated and how difficult the system will be to describe numerically. For systems with only short-range interactions, Lieb and Robinson derived a constant-velocity bound that limits correlations to within a linear effective light cone. However, little is known about the propagation speed in systems with long-range interactions, since the best long-range bound is too loose to give the correct light-cone shape for any known spin model and since analytic solutions rarely exist. In this work, we experimentally determine the spatial and time-dependent correlations of a far-from-equilibrium quantum many-body system evolving under a long-range Ising- or XY-model Hamiltonian. For several different interaction ranges, we extract the shape of the light cone and measure the velocity with which correlations propagate through the system. In many cases we find increasing propagation velocities, which violate the Lieb-Robinson prediction, and in one instance cannot be explained by any existing theory. Our results demonstrate that even modestly-sized quantum simulators are well-poised for studying complicated many-body systems that are intractable to classical computation. VL - 511 U4 - 198 - 201 UR - http://arxiv.org/abs/1401.5088v1 CP - 7508 J1 - Nature U5 - 10.1038/nature13450 ER - TY - JOUR T1 - Persistence of locality in systems with power-law interactions JF - Physical Review Letters Y1 - 2014 A1 - Zhe-Xuan Gong A1 - Michael Foss-Feig A1 - Spyridon Michalakis A1 - Alexey V. Gorshkov AB - Motivated by recent experiments with ultra-cold matter, we derive a new bound on the propagation of information in $D$-dimensional lattice models exhibiting $1/r^{\alpha}$ interactions with $\alpha>D$. The bound contains two terms: One accounts for the short-ranged part of the interactions, giving rise to a bounded velocity and reflecting the persistence of locality out to intermediate distances, while the other contributes a power-law decay at longer distances. We demonstrate that these two contributions not only bound but, except at long times, \emph{qualitatively reproduce} the short- and long-distance dynamical behavior following a local quench in an $XY$ chain and a transverse-field Ising chain. In addition to describing dynamics in numerous intractable long-range interacting lattice models, our results can be experimentally verified in a variety of ultracold-atomic and solid-state systems. VL - 113 UR - http://arxiv.org/abs/1401.6174v2 CP - 3 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.113.030602 ER - TY - JOUR T1 - Individual Addressing in Quantum Computation through Spatial Refocusing JF - Physical Review A Y1 - 2013 A1 - Chao Shen A1 - Zhe-Xuan Gong A1 - Luming Duan AB - Separate addressing of individual qubits is a challenging requirement for scalable quantum computation, and crosstalk between operations on neighboring qubits remains as a significant source of noise for current experimental implementation of multi-qubit platforms. We propose a scheme based on spatial refocusing from interference of several coherent laser beams to significantly reduce the crosstalk noise for any type of quantum gates. A general framework is developed for the spatial refocusing technique, in particular with practical Gaussian beams, and we show under typical experimental conditions, the crosstalk-induced infidelity of quantum gates can be reduced by several orders of magnitude with a moderate cost of a few correction laser beams. VL - 88 UR - http://arxiv.org/abs/1305.2798v3 CP - 5 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.88.052325 ER - TY - JOUR T1 - Prethermalization and dynamical transition in an isolated trapped ion spin chain JF - New Journal of Physics Y1 - 2013 A1 - Zhe-Xuan Gong A1 - L. -M. Duan AB - We propose an experimental scheme to observe prethermalization and dynamical transition in one-dimensional XY spin chain with long range interaction and inhomogeneous lattice spacing, which can be readily implemented with the recently developed trapped-ion quantum simulator. Local physical observables are found to relax to prethermal values at intermediate time scale, followed by complete relaxation to thermal values at much longer time. The physical origin of prethermalization is explained by spotting a non-trivial structure in lower half of the energy spectrum. The dynamical behavior of the system is shown to cross difference phases when the interaction range is continuously tuned, indicating the existence of dynamical phase transition. VL - 15 U4 - 113051 UR - http://arxiv.org/abs/1305.0985v1 CP - 11 J1 - New J. Phys. U5 - 10.1088/1367-2630/15/11/113051 ER - TY - JOUR T1 - Quantum Logic between Remote Quantum Registers JF - Physical Review A Y1 - 2013 A1 - Norman Y. Yao A1 - Zhe-Xuan Gong A1 - Chris R. Laumann A1 - Steven D. Bennett A1 - L. -M. Duan A1 - Mikhail D. Lukin A1 - Liang Jiang A1 - Alexey V. Gorshkov AB - We analyze two approaches to quantum state transfer in solid-state spin systems. First, we consider unpolarized spin-chains and extend previous analysis to various experimentally relevant imperfections, including quenched disorder, dynamical decoherence, and uncompensated long range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing which exploits all of the spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate "dark" spin qubits significantly raise the error threshold for robust operation. Finally, as an example, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated Nitrogen-Vacancy registers in diamond; numerical simulations confirm that high fidelity gates are achievable even in the presence of moderate disorder. VL - 87 UR - http://arxiv.org/abs/1206.0014v1 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.87.022306 ER - TY - JOUR T1 - Photonic quantum simulation of ground state configurations of Heisenberg square and checkerboard lattice spin systems Y1 - 2012 A1 - Xiao-song Ma A1 - Borivoje Dakic A1 - Sebastian Kropatsche A1 - William Naylor A1 - Yang-hao Chan A1 - Zhe-Xuan Gong A1 - Lu-ming Duan A1 - Anton Zeilinger A1 - Philip Walther AB - Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. The available photonic quantum technology is reaching the state where significant advantages arise for the quantum simulation of interesting questions in Heisenberg spin systems. Here we experimentally simulate such spin systems with single photons and linear optics. The effective Heisenberg-type interactions among individual single photons are realized by quantum interference at the tunable direction coupler followed by the measurement process. The effective interactions are characterized by comparing the entanglement dynamics using pairwise concurrence of a four-photon quantum system. We further show that photonic quantum simulations of generalized Heisenberg interactions on a four-site square lattice and a six-site checkerboard lattice are in reach of current technology. UR - http://arxiv.org/abs/1205.2801v1 ER - TY - JOUR T1 - Quantum Simulation of Spin Models on an Arbitrary Lattice with Trapped Ions JF - New Journal of Physics Y1 - 2012 A1 - Simcha Korenblit A1 - Dvir Kafri A1 - Wess C. Campbell A1 - Rajibul Islam A1 - Emily E. Edwards A1 - Zhe-Xuan Gong A1 - Guin-Dar Lin A1 - Luming Duan A1 - Jungsang Kim A1 - Kihwan Kim A1 - Christopher Monroe AB - A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable. VL - 14 U4 - 095024 UR - http://arxiv.org/abs/1201.0776v1 CP - 9 J1 - New J. Phys. U5 - 10.1088/1367-2630/14/9/095024 ER - TY - JOUR T1 - Reply to Comment on "Space-Time Crystals of Trapped Ions Y1 - 2012 A1 - Tongcang Li A1 - Zhe-Xuan Gong A1 - Zhang-qi Yin A1 - H. T. Quan A1 - Xiaobo Yin A1 - Peng Zhang A1 - L. -M. Duan A1 - Xiang Zhang AB - This is a reply to the comment from Patrick Bruno (arXiv:1211.4792) on our paper (Phys. Rev. Lett. 109, 163001 (2012)). UR - http://arxiv.org/abs/1212.6959v2 U5 - http://dx.doi.org/10.1103/PhysRevLett.109.163001 ER - TY - JOUR T1 - Space-Time Crystals of Trapped Ions JF - Physical Review Letters Y1 - 2012 A1 - Tongcang Li A1 - Gong, Zhe-Xuan A1 - Yin, Zhang-Qi A1 - Quan, H. T. A1 - Yin, Xiaobo A1 - Zhang, Peng A1 - Duan, L.-M. A1 - Zhang, Xiang AB - Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter. VL - 109 U4 - 163001 UR - http://link.aps.org/doi/10.1103/PhysRevLett.109.163001 CP - 16 U5 - 10.1103/PhysRevLett.109.163001 ER - TY - JOUR T1 - Comment on "Foundation of Statistical Mechanics under Experimentally Realistic Conditions" Y1 - 2011 A1 - Zhe-Xuan Gong A1 - L. -M. Duan AB - Reimann [Phys. Rev. Lett. 101, 190403 (2008)] claimed that generic isolated macroscopic quantum system will equilibrate under experimentally realistic conditions by proving a theorem. We here show that the proof is invalid for most many-body systems and is unable to demonstrate equilibration in realistic experiment. UR - http://arxiv.org/abs/1109.4696v1 ER - TY - JOUR T1 - Dynamics of Overhauser Field under nuclear spin diffusion in a quantum dot JF - New Journal of Physics Y1 - 2011 A1 - Zhe-Xuan Gong A1 - Zhang-qi Yin A1 - L. -M. Duan AB - The coherence of electron spin can be significantly enhanced by locking the Overhauser field from nuclear spins using the nuclear spin preparation. We propose a theoretical model to calculate the long time dynamics of the Overhauser field under intrinsic nuclear spin diffusion in a quantum dot. We obtain a simplified diffusion equation that can be numerically solved and show quantitatively how the Knight shift and the electron-mediated nuclear spin flip-flop affect the nuclear spin diffusion. The results explain several recent experimental observations, where the decay time of Overhauser field is measured under different configurations, including variation of the external magnetic field, the electron spin configuration in a double dot, and the initial nuclear spin polarization rate. VL - 13 U4 - 033036 UR - http://arxiv.org/abs/0912.4322v1 CP - 3 J1 - New J. Phys. U5 - 10.1088/1367-2630/13/3/033036 ER - TY - JOUR T1 - Robust Quantum State Transfer in Random Unpolarized Spin Chains JF - Physical Review Letters Y1 - 2011 A1 - Norman Y. Yao A1 - Liang Jiang A1 - Alexey V. Gorshkov A1 - Zhe-Xuan Gong A1 - Alex Zhai A1 - L. -M. Duan A1 - Mikhail D. Lukin AB - We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed. VL - 106 UR - http://arxiv.org/abs/1011.2762v2 CP - 4 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.106.040505 ER - TY - JOUR T1 - Temperature driven structural phase transition for trapped ions and its experimental detection JF - Physical Review Letters Y1 - 2010 A1 - Zhe-Xuan Gong A1 - G. -D. Lin A1 - L. -M. Duan AB - A Wigner crystal formed with trapped ion can undergo structural phase transition, which is determined only by the mechanical conditions on a classical level. Instead of this classical result, we show that through consideration of quantum and thermal fluctuation, a structural phase transition can be solely driven by change of the system's temperature. We determine a finite-temperature phase diagram for trapped ions using the renormalization group method and the path integral formalism, and propose an experimental scheme to observe the predicted temperature-driven structural phase transition, which is well within the reach of the current ion trap technology. VL - 105 UR - http://arxiv.org/abs/1009.0089v1 CP - 26 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.105.265703 ER - TY - JOUR T1 - Efficient scheme for one-way quantum computing in thermal cavities JF - International Journal of Theoretical Physics Y1 - 2008 A1 - Wen-Xing Yang A1 - Zhe-Xuan Gong AB - We propose a practical scheme for one-way quantum computing based on efficient generation of 2D cluster state in thermal cavities. We achieve a controlled-phase gate that is neither sensitive to cavity decay nor to thermal field by adding a strong classical field to the two-level atoms. We show that a 2D cluster state can be generated directly by making every two atoms collide in an array of cavities, with numerically calculated parameters and appropriate operation sequence that can be easily achieved in practical Cavity QED experiments. Based on a generated cluster state in Box$^{(4)}$ configuration, we then implement Grover's search algorithm for four database elements in a very simple way as an example of one-way quantum computing. VL - 47 U4 - 2997 - 3004 UR - http://arxiv.org/abs/0704.2297v1 CP - 11 J1 - Int J Theor Phys U5 - 10.1007/s10773-008-9734-x ER - TY - JOUR T1 - Practical scheme for quantum dense coding between three parties using microwave radiation in trapped ions JF - Journal of Physics B: Atomic, Molecular and Optical Physics Y1 - 2007 A1 - Wen-Xing Yang A1 - Zhe-Xuan Gong AB - We propose a practical scheme for implementing two-dimension quantum dense coding (QDC) between three parties through manipulating three ions confined in microtraps addressed by microwaves and assisted by a magnetic field gradient. The ions in our scheme are not required to be strictly cooled to the vibrational ground state because single-qubit and multi-qubit operations are made via Ising terms, in which the vibrational modes of the ions remain unchanged throughout the scheme, rendering our scheme robust to the heating of the ions. We also present the detailed steps and parameters for implementing the three-party QDC experimentally and show that the proposed scheme is within the current techniques of ion-trap experiments. VL - 40 U4 - 1245 - 1252 UR - http://arxiv.org/abs/quant-ph/0702062v1 CP - 6 J1 - J. Phys. B: At. Mol. Opt. Phys. U5 - 10.1088/0953-4075/40/6/014 ER - TY - JOUR T1 - Simple scheme for implementing the Deutsch-Jozsa algorithm in thermal cavity JF - Journal of Physics A: Mathematical and Theoretical Y1 - 2007 A1 - Wen-Xing Yang A1 - Zhe-Xuan Gong AB - We present a simple scheme to implement the Deutsch-Jozsa algorithm based on two-atom interaction in a thermal cavity. The photon-number-dependent parts in the evolution operator are canceled with the strong resonant classical field added. As a result, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure. Besides, large detuning between the atoms and the cavity is not necessary neither, leading to potential speed up of quantum operation. Finally, we show by numerical simulation that the proposed scheme is equal to demonstrate the Deutsch-Jozsa algorithm with high fidelity. VL - 40 U4 - 155 - 161 UR - http://arxiv.org/abs/quant-ph/0611225v2 CP - 1 J1 - J. Phys. A: Math. Theor. U5 - 10.1088/1751-8113/40/1/009 ER - TY - JOUR T1 - Effective error-suppression scheme for reversible quantum computer Y1 - 2006 A1 - Zhe-Xuan Gong AB - We construct a new error-suppression scheme that makes use of the adjoint of reversible quantum algorithms. For decoherence induced errors such as depolarization, it is presented that provided the depolarization error probability is less than 1, our scheme can exponentially reduce the final output error rate to zero using a number of cycles, and the output state can be coherently sent to another stage of quantum computation process. Besides, experimental set-ups via optical approach have been proposed using Grover's search algorithm as an example. Some further discussion on the benefits and limitations of the scheme is given in the end. UR - http://arxiv.org/abs/quant-ph/0608152v4 ER -