TY - JOUR T1 - Mechanical Quantum Sensing in the Search for Dark Matter Y1 - 2020 A1 - D. Carney A1 - G. Krnjaic A1 - D. C. Moore A1 - C. A. Regal A1 - G. Afek A1 - S. Bhave A1 - B. Brubaker A1 - T. Corbitt A1 - J. Cripe A1 - N. Crisosto A1 - A.Geraci A1 - S. Ghosh A1 - J. G. E. Harris A1 - A. Hook A1 - E. W. Kolb A1 - J. Kunjummen A1 - R. F. Lang A1 - T. Li A1 - T. Lin A1 - Z. Liu A1 - J. Lykken A1 - L. Magrini A1 - J. Manley A1 - N. Matsumoto A1 - A. Monte A1 - F. Monteiro A1 - T. Purdy A1 - C. J. Riedel A1 - R. Singh A1 - S. Singh A1 - K. Sinha A1 - J. M. Taylor A1 - J. Qin A1 - D. J. Wilson A1 - Y. Zhao AB -

Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.

UR - https://arxiv.org/abs/2008.06074 ER -