We prove the existence of a universal recovery channel that approximately recovers states on a v. Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous results that applied to type-I v. Neumann algebras by Junge at al. [arXiv:1509.07127]. We broadly follow their proof strategy but consider here arbitrary v. Neumann algebras, where qualitatively new issues arise. Our results hinge on the construction of certain analytic vectors and computations/estimations of their Araki-Masuda Lp norms. We comment on applications to the quantum null energy condition.

UR - https://arxiv.org/abs/2006.08002 ER - TY - JOUR T1 - Approximate recovery and relative entropy I. general von Neumann subalgebras Y1 - 2020 A1 - Thomas Faulkner A1 - Stefan Hollands A1 - Brian Swingle A1 - Yixu Wang AB -We prove the existence of a universal recovery channel that approximately recovers states on a v. Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous results that applied to type-I v. Neumann algebras by Junge at al. [arXiv:1509.07127]. We broadly follow their proof strategy but consider here arbitrary v. Neumann algebras, where qualitatively new issues arise. Our results hinge on the construction of certain analytic vectors and computations/estimations of their Araki-Masuda Lp norms. We comment on applications to the quantum null energy condition.

UR - https://arxiv.org/abs/2006.08002 ER -