Magnetic fields break time-reversal symmetry, which is leveraged in many settings to enable the nonreciprocal behavior of light. This is the core physics of circulators and other elements used in a variety of microwave and optical settings. Commercial circulators in the microwave domain typically use ferromagnetic materials and wave interference, requiring large devices and large fields. However, quantum information devices for sensing and computation require small sizes, lower fields, and better on-chip integration. Equivalences to ferromagnetic order---such as the XY model---can be realized at much lower magnetic fields by using arrays of superconducting islands connected by Josephson junctions. Here we show that the quantum-coherent motion of a single vortex in such an array suffices to induce nonreciprocal behavior, enabling a small-scale, moderate-bandwidth, and low insertion loss circulator at very low magnetic fields and at microwave frequencies relevant for experiments with qubits.

VL - 2 U4 - 030309 UR - https://arxiv.org/abs/2010.04118 U5 - https://doi.org/10.1103/PRXQuantum.2.030309 ER - TY - JOUR T1 - Faster Digital Quantum Simulation by Symmetry Protection JF - PRX Quantum Y1 - 2021 A1 - Minh C. Tran A1 - Yuan Su A1 - Daniel Carney A1 - J. M. Taylor AB -Simulating the dynamics of quantum systems is an important application of quantum computers and has seen a variety of implementations on current hardware. We show that by introducing quantum gates implementing unitary transformations generated by the symmetries of the system, one can induce destructive interference between the errors from different steps of the simulation, effectively giving faster quantum simulation by symmetry protection. We derive rigorous bounds on the error of a symmetry-protected simulation algorithm and identify conditions for optimal symmetry protection. In particular, when the symmetry transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno subspaces. We prove a bound on this approximation error, exponentially improving a recent result of Burgarth, Facchi, Gramegna, and Pascazio. We apply our technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory. For both systems, our algorithm can reduce the simulation error by several orders of magnitude over the unprotected simulation. Finally, we provide numerical evidence suggesting that our technique can also protect simulation against other types of coherent, temporally correlated errors, such as the 1/f noise commonly found in solid-state experiments.

VL - 2 UR - https://arxiv.org/abs/2006.16248 U5 - http://dx.doi.org/10.1103/PRXQuantum.2.010323 ER - TY - JOUR T1 - Ray-based framework for state identification in quantum dot devices JF - PRX Quantum Y1 - 2021 A1 - Justyna P. Zwolak A1 - Thomas McJunkin A1 - Sandesh S. Kalantre A1 - Samuel F. Neyens A1 - E. R. MacQuarrie A1 - Mark A. Eriksson A1 - J. M. Taylor AB -Quantum dots (QDs) defined with electrostatic gates are a leading platform for a scalable quantum computing implementation. However, with increasing numbers of qubits, the complexity of the control parameter space also grows. Traditional measurement techniques, relying on complete or near-complete exploration via two-parameter scans (images) of the device response, quickly become impractical with increasing numbers of gates. Here, we propose to circumvent this challenge by introducing a measurement technique relying on one-dimensional projections of the device response in the multi-dimensional parameter space. Dubbed as the ray-based classification (RBC) framework, we use this machine learning (ML) approach to implement a classifier for QD states, enabling automated recognition of qubit-relevant parameter regimes. We show that RBC surpasses the 82 % accuracy benchmark from the experimental implementation of image-based classification techniques from prior work while cutting down the number of measurement points needed by up to 70 %. The reduction in measurement cost is a significant gain for time-intensive QD measurements and is a step forward towards the scalability of these devices. We also discuss how the RBC-based optimizer, which tunes the device to a multi-qubit regime, performs when tuning in the two- and three-dimensional parameter spaces defined by plunger and barrier gates that control the dots. This work provides experimental validation of both efficient state identification and optimization with ML techniques for non-traditional measurements in quantum systems with high-dimensional parameter spaces and time-intensive measurements.

VL - 2 UR - https://arxiv.org/abs/2102.11784 CP - 020335 U5 - https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020335 ER - TY - JOUR T1 - Theoretical bounds on data requirements for the ray-based classification Y1 - 2021 A1 - Brian J. Weber A1 - Sandesh S. Kalantre A1 - Thomas McJunkin A1 - J. M. Taylor A1 - Justyna P. Zwolak AB -The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases. For the case of identifying convex shapes of different geometries, a new classification framework has recently been proposed in which the intersections of a set of one-dimensional representations, called rays, with the boundaries of the shape are used to identify the specific geometry. This ray-based classification (RBC) has been empirically verified using a synthetic dataset of two- and three-dimensional shapes [1] and, more recently, has also been validated experimentally [2]. Here, we establish a bound on the number of rays necessary for shape classification, defined by key angular metrics, for arbitrary convex shapes. For two dimensions, we derive a lower bound on the number of rays in terms of the shape's length, diameter, and exterior angles. For convex polytopes in R^N, we generalize this result to a similar bound given as a function of the dihedral angle and the geometrical parameters of polygonal faces. This result enables a different approach for estimating high-dimensional shapes using substantially fewer data elements than volumetric or surface-based approaches.

UR - https://arxiv.org/abs/2103.09577 ER - TY - JOUR T1 - Trapped electrons and ions as particle detectors JF - Phys. Rev. Lett. Y1 - 2021 A1 - Daniel Carney A1 - Hartmut Häffner A1 - David C. Moore A1 - J. M. Taylor AB -Electrons and ions trapped with electromagnetic fields have long served as important high-precision metrological instruments, and more recently have also been proposed as a platform for quantum information processing. Here we point out that these systems can also be used as highly sensitive detectors of passing charged particles, due to the combination of their extreme charge-to-mass ratio and low-noise quantum readout and control. In particular, these systems can be used to detect energy depositions many orders of magnitude below typical ionization scales. As an illustration, we show that current devices can be used to provide competitive sensitivity to models where ambient dark matter particles carry small electric millicharges ≪e. Our calculations may also be useful in the characterization of noise in quantum computers coming from backgrounds of charged particles.

VL - 127 UR - https://arxiv.org/abs/2104.05737 CP - 061804 U5 - https://doi.org/10.1103/PhysRevLett.127.061804 ER - TY - JOUR T1 - Ultralight dark matter detection with mechanical quantum sensors JF - New Journal of Physics Y1 - 2021 A1 - Daniel Carney A1 - Anson Hook A1 - Zhen Liu A1 - J. M. Taylor A1 - Yue Zhao AB -We consider the use of quantum-limited mechanical force sensors to detect ultralight (sub-meV) dark matter candidates which are weakly coupled to the standard model. We show that mechanical sensors with masses around or below the milligram scale, operating around the standard quantum limit, would enable novel searches for dark matter with natural frequencies around the kHz scale. This would complement existing strategies based on torsion balances, atom interferometers, and atomic clock systems

VL - 23 U4 - 023041 UR - https://arxiv.org/abs/1908.04797 CP - 2 U5 - https://doi.org/10.1088/1367-2630/abd9e7 ER - TY - JOUR T1 - Auto-tuning of double dot devices in situ with machine learning JF - Phys. Rev. Applied Y1 - 2020 A1 - Justyna P. Zwolak A1 - Thomas McJunkin A1 - Sandesh S. Kalantre A1 - J. P. Dodson A1 - E. R. MacQuarrie A1 - D. E. Savage A1 - M. G. Lagally A1 - S. N. Coppersmith A1 - Mark A. Eriksson A1 - J. M. Taylor AB -There are myriad quantum computing approaches, each having its own set of challenges to understand and effectively control their operation. Electrons confined in arrays of semiconductor nanostructures, called quantum dots (QDs), is one such approach. The easy access to control parameters, fast measurements, long qubit lifetimes, and the potential for scalability make QDs especially attractive. However, as the size of the QD array grows, so does the number of parameters needed for control and thus the tuning complexity. The current practice of manually tuning the qubits is a relatively time-consuming procedure and is inherently impractical for scaling up and applications. In this work, we report on the in situ implementation of an auto-tuning protocol proposed by Kalantre et al. [arXiv:1712.04914]. In particular, we discuss how to establish a seamless communication protocol between a machine learning (ML)-based auto-tuner and the experimental apparatus. We then show that a ML algorithm trained exclusively on synthetic data coming from a physical model to quantitatively classify the state of the QD device, combined with an optimization routine, can be used to replace manual tuning of gate voltages in devices. A success rate of over 85 % is determined for tuning to a double quantum dot regime when at least one of the plunger gates is initiated sufficiently close to the desired state. Modifications to the training network, fitness function, and optimizer are discussed as a path towards further improvement in the success rate when starting both near and far detuned from the target double dot range.

VL - 13 UR - https://arxiv.org/abs/1909.08030 CP - 034075 U5 - https://doi.org/10.1103/PhysRevApplied.13.034075 ER - TY - JOUR T1 - Back-action evading impulse measurement with mechanical quantum sensors JF - Phys. Rev. A Y1 - 2020 A1 - Sohitri Ghosh A1 - Daniel Carney A1 - Peter Shawhan A1 - J. M. Taylor AB -The quantum measurement of any observable naturally leads to noise added by the act of measurement. Approaches to evade or reduce this noise can lead to substantial improvements in a wide variety of sensors, from laser interferometers to precision magnetometers and more. In this paper, we develop a measurement protocol based upon pioneering work by the gravitational wave community which allows for reduction of added noise from measurement by coupling an optical field to the momentum of a small mirror. As a specific implementation, we present a continuous measurement protocol using a double-ring optomechanical cavity. We demonstrate that with experimentally-relevant parameters, this protocol can lead to significant back-action noise evasion, yielding measurement noise below the standard quantum limit over many decades of frequency.

VL - 102 UR - https://arxiv.org/pdf/1910.11892.pdf CP - 023525 U5 - https://doi.org/10.1103/PhysRevA.102.023525 ER - TY - JOUR T1 - Gravitational Direct Detection of Dark Matter JF - Phys. Rev. D Y1 - 2020 A1 - Daniel Carney A1 - Sohitri Ghosh A1 - Gordan Krnjaic A1 - J. M. Taylor AB -The only coupling dark matter is guaranteed to have with the standard model is through gravity. Here we propose a concept for direct dark matter detection using only this gravitational coupling, enabling a new regime of detection. Leveraging dramatic advances in the ability to create, maintain, and probe quantum states of massive objects, we suggest that an array of quantum-limited impulse sensors may be capable of detecting the correlated gravitational force created by a passing dark matter particle. We present two concrete realizations of this scheme, using either mechanical resonators or freely-falling masses. With currently available technology, a meter-scale apparatus of this type could detect any dark matter candidate around the Planck mass or heavier.

VL - 102 UR - https://arxiv.org/abs/1903.00492 CP - 072003 U5 - https://doi.org/10.1103/PhysRevD.102.072003 ER - TY - JOUR T1 - Mechanical Quantum Sensing in the Search for Dark Matter Y1 - 2020 A1 - D. Carney A1 - G. Krnjaic A1 - D. C. Moore A1 - C. A. Regal A1 - G. Afek A1 - S. Bhave A1 - B. Brubaker A1 - T. Corbitt A1 - J. Cripe A1 - N. Crisosto A1 - A.Geraci A1 - S. Ghosh A1 - J. G. E. Harris A1 - A. Hook A1 - E. W. Kolb A1 - J. Kunjummen A1 - R. F. Lang A1 - T. Li A1 - T. Lin A1 - Z. Liu A1 - J. Lykken A1 - L. Magrini A1 - J. Manley A1 - N. Matsumoto A1 - A. Monte A1 - F. Monteiro A1 - T. Purdy A1 - C. J. Riedel A1 - R. Singh A1 - S. Singh A1 - K. Sinha A1 - J. M. Taylor A1 - J. Qin A1 - D. J. Wilson A1 - Y. Zhao AB -Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.

UR - https://arxiv.org/abs/2008.06074 ER - TY - JOUR T1 - Optimal Two-Qubit Circuits for Universal Fault-Tolerant Quantum Computation Y1 - 2020 A1 - Andrew N. Glaudell A1 - Neil J. Ross A1 - J. M. Taylor AB -We study two-qubit circuits over the Clifford+CS gate set which consists of Clifford gates together with the controlled-phase gate CS=diag(1,1,1,i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes with magic state distillation. However, since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is desirable to construct circuits that use few CS gates. In the present paper, we introduce an algorithm to construct optimal circuits for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and efficiently produces a Clifford+CS circuit for U using the least possible number of CS gates. Because our algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for the operator. We give a formal description of these normal forms as walks over certain graphs and use this description to derive an asymptotic lower bound of 5log(1/epsilon)+O(1) on the number CS gates required to epsilon-approximate any 4x4 unitary matrix.

UR - https://arxiv.org/abs/2001.05997 ER - TY - JOUR T1 - Position Space Decoherence From Long-Range Interaction With Background Gas JF - Bulletin of the American Physical Society Y1 - 2020 A1 - Jonathan Kunjummen A1 - Daniel Carney A1 - J. M. Taylor AB -Experiments in matter wave interferometry and optomechanics are increasing the spatial extent of wavefunctions of massive quantum systems; this gives rise to new sources of decoherence that must be characterized. Here we calculate the position space decoherence of a quantum particle due to interaction with a fluctuating classical background gas for several different force laws. We begin with the calculation of this effect for the Newton potential. To our knowledge, this calculation has not been done before. We then solve the same problem in the case of a Yukawa interaction, which interpolates between our long-range force result and the well-studied formula for collisional decoherence from a contact interaction. Unlike the contact interaction case, where the decoherence rate becomes independent of distance for large quantum particle separations, we observe that a long-range interaction leads to quadratic scaling of the decoherence rate with distance even at large separations. This work is relevant to the generation of massive superposition in optomechanical and atom beam experiments, and to conclude we comment on the use of this decoherence signal for gravitational detection of dark matter.

UR - http://meetings.aps.org/Meeting/DAMOP20/Session/S08.5 ER - TY - JOUR T1 - Probing XY phase transitions in a Josephson junction array with tunable frustration Y1 - 2020 A1 - R. Cosmic A1 - K. Kawabata A1 - Y. Ashida A1 - H. Ikegami A1 - S. Furukawa A1 - P. Patil A1 - J. M. Taylor A1 - Y. Nakamura AB -The seminal theoretical works of Berezinskii, Kosterlitz, and Thouless presented a new paradigm for phase transitions in condensed matter that are driven by topological excitations. These transitions have been extensively studied in the context of two-dimensional XY models -- coupled compasses -- and have generated interest in the context of quantum simulation. Here, we use a circuit quantum-electrodynamics architecture to study the critical behavior of engineered XY models through their dynamical response. In particular, we examine not only the unfrustrated case but also the fully-frustrated case which leads to enhanced degeneracy associated with the spin rotational [U(1)] and discrete chiral (Z2) symmetries. The nature of the transition in the frustrated case has posed a challenge for theoretical studies while direct experimental probes remain elusive. Here we identify the transition temperatures for both the unfrustrated and fully-frustrated XY models by probing a Josephson junction array close to equilibrium using weak microwave excitations and measuring the temperature dependence of the effective damping obtained from the complex reflection coefficient. We argue that our probing technique is primarily sensitive to the dynamics of the U(1) part.

UR - https://arxiv.org/abs/2001.07877 ER - TY - JOUR T1 - Ray-based classification framework for high-dimensional data Y1 - 2020 A1 - Justyna P. Zwolak A1 - Sandesh S. Kalantre A1 - Thomas McJunkin A1 - Brian J. Weber A1 - J. M. Taylor AB -While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than using dense, multi-dimensional data, we propose a deep neural network (DNN) classification framework that utilizes a minimal collection of one-dimensional representations, called \emph{rays}, to construct the "fingerprint" of the structure(s) based on substantially reduced information. We empirically study this framework using a synthetic dataset of double and triple quantum dot devices and apply it to the classification problem of identifying the device state. We show that the performance of the ray-based classifier is already on par with traditional 2D images for low dimensional systems, while significantly cutting down the data acquisition cost.

UR - https://arxiv.org/abs/2010.00500 ER - TY - JOUR T1 - Beyond Spontaneous Emission: Giant Atom Bounded in Continuum Y1 - 2019 A1 - Shangjie Guo A1 - Yidan Wang A1 - Thomas Purdy A1 - J. M. Taylor AB -The quantum coupling of individual superconducting qubits to microwave photons leads to remarkable experimental opportunities. Here we consider the phononic case where the qubit is coupled to an electromagnetic surface acoustic wave antenna that enables supersonic propagation of the qubit oscillations. This can be considered as a giant atom that is many phonon wavelengths long. We study an exactly solvable toy model that captures these effects, and find that this non-Markovian giant atom has a suppressed relaxation, as well as an effective vacuum coupling between a qubit excitation and a localized wave packet of sound, even in the absence of a cavity for the sound waves. Finally, we consider practical implementations of these ideas in current surface acoustic wave devices.

UR - https://arxiv.org/abs/1912.09980 ER - TY - JOUR T1 - Canonical forms for single-qutrit Clifford+T operators JF - Annals of Physics Y1 - 2019 A1 - Andrew N. Glaudell A1 - Neil J. Ross A1 - J. M. Taylor AB -We introduce canonical forms for single qutrit Clifford+T circuits and prove that every single-qutrit Clifford+T operator admits a unique such canonical form. We show that our canonical forms are T-optimal in the sense that among all the single-qutrit Clifford+T circuits implementing a given operator our canonical form uses the least number of T gates. Finally, we provide an algorithm which inputs the description of an operator (as a matrix or a circuit) and constructs the canonical form for this operator. The algorithm runs in time linear in the number of T gates. Our results provide a higher-dimensional generalization of prior work by Matsumoto and Amano who introduced similar canonical forms for single-qubit Clifford+T circuits.

VL - 406 U4 - 54-70 UR - https://arxiv.org/abs/1803.05047 U5 - https://doi.org/10.1016/j.aop.2019.04.001 ER - TY - JOUR T1 - Quantum Computing at the Frontiers of Biological Sciences Y1 - 2019 A1 - Prashant S. Emani A1 - Jonathan Warrell A1 - Alan Anticevic A1 - Stefan Bekiranov A1 - Michael Gandal A1 - Michael J. McConnell A1 - Guillermo Sapiro A1 - Alán Aspuru-Guzik A1 - Justin Baker A1 - Matteo Bastiani A1 - Patrick McClure A1 - John Murray A1 - Stamatios N Sotiropoulos A1 - J. M. Taylor A1 - Geetha Senthil A1 - Thomas Lehner A1 - Mark B. Gerstein A1 - Aram W. Harrow AB -The search for meaningful structure in biological data has relied on cutting-edge advances in computational technology and data science methods. However, challenges arise as we push the limits of scale and complexity in biological problems. Innovation in massively parallel, classical computing hardware and algorithms continues to address many of these challenges, but there is a need to simultaneously consider new paradigms to circumvent current barriers to processing speed. Accordingly, we articulate a view towards quantum computation and quantum information science, where algorithms have demonstrated potential polynomial and exponential computational speedups in certain applications, such as machine learning. The maturation of the field of quantum computing, in hardware and algorithm development, also coincides with the growth of several collaborative efforts to address questions across length and time scales, and scientific disciplines. We use this coincidence to explore the potential for quantum computing to aid in one such endeavor: the merging of insights from genetics, genomics, neuroimaging and behavioral phenotyping. By examining joint opportunities for computational innovation across fields, we highlight the need for a common language between biological data analysis and quantum computing. Ultimately, we consider current and future prospects for the employment of quantum computing algorithms in the biological sciences.

UR - https://arxiv.org/abs/1911.07127 ER - TY - JOUR T1 - An autonomous single-piston engine with a quantum rotor Y1 - 2018 A1 - Alexandre Roulet A1 - Stefan Nimmrichter A1 - J. M. Taylor AB -Pistons are elementary components of a wide variety of thermal engines, converting input fuel into rotational motion. Here, we propose a single-piston engine where the rotational degree of freedom is effectively realized by the flux of a superconducting island -- a quantum rotor -- while the working volume corresponds to the effective length of a superconducting resonator. Our autonomous design implements a Carnot cycle, relies solely on standard thermal baths and can be implemented with circuit quantum electrodynamics. We demonstrate how the piston is able to extract a net positive work via its built-in synchronicity using a filter cavity as an effective valve, eliminating the need for external control.

UR - https://arxiv.org/abs/1802.05486 U5 - https://doi.org/10.1088/2058-9565/aac40d ER - TY - JOUR T1 - Blind quantum computation using the central spin Hamiltonian Y1 - 2018 A1 - Minh C. Tran A1 - J. M. Taylor AB -Blindness is a desirable feature in delegated computation. In the classical setting, blind computations protect the data or even the program run by a server. In the quantum regime, blind computing may also enable testing computational or other quantum properties of the server system. Here we propose a scheme for universal blind quantum computation using a quantum simulator capable of emulating Heisenberg-like Hamiltonians. Our scheme is inspired by the central spin Hamiltonian in which a single spin controls dynamics of a number of bath spins. We show how, by manipulating this spin, a client that only accesses the central spin can effectively perform blind computation on the bath spins. Remarkably, two-way quantum communication mediated by the central spin is sufficient to ensure security in the scheme. Finally, we provide explicit examples of how our universal blind quantum computation enables verification of the power of the server from classical to stabilizer to full BQP computation.

UR - https://arxiv.org/abs/1801.04006 ER - TY - JOUR T1 - Bose Condensation of Photons Thermalized via Laser Cooling of Atoms Y1 - 2018 A1 - Chiao-Hsuan Wang A1 - Michael Gullans A1 - J. V. Porto A1 - William D. Phillips A1 - J. M. Taylor AB -A Bose-Einstein condensate (BEC) is a quantum phase of matter achieved at low temperatures. Photons, one of the most prominent species of bosons, do not typically condense due to the lack of a particle number-conservation. We recently described a photon thermalization mechanism which gives rise to a grand canonical ensemble of light with effective photon number conservation between a subsystem and a particle reservoir. This mechanism occurs during Doppler laser cooling of atoms where the atoms serve as a temperature reservoir while the cooling laser photons serve as a particle reservoir. Here we address the question of the possibility of a BEC of photons in this laser cooling photon thermalization scenario and theoretically demonstrate that a Bose condensation of photons can be realized by cooling an ensemble of two-level atoms (realizable with alkaline earth atoms) inside a Fabry-Perot cavity.

UR - https://arxiv.org/abs/1809.07777 ER - TY - JOUR T1 - Circuit QED-based measurement of vortex lattice order in a Josephson junction array JF - Phys. Rev. B 98, 060501 Y1 - 2018 A1 - R. Cosmic A1 - Hiroki Ikegami A1 - Zhirong Lin A1 - Kunihiro Inomata A1 - J. M. Taylor A1 - Yasunobu Nakamura AB -Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii--Kosterlitz--Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

UR - https://arxiv.org/abs/1803.04113 U5 - https://doi.org/10.1103/PhysRevB.98.060501 ER - TY - JOUR T1 - A Coherent Spin-Photon Interface in Silicon JF - Nature Y1 - 2018 A1 - X. Mi A1 - M. Benito A1 - S. Putz A1 - D. M. Zajac A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and "all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2π) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.

VL - 555 U4 - 599-603 UR - https://arxiv.org/abs/1710.03265 U5 - https://doi.org/10.1038/nature25769 ER - TY - JOUR T1 - A coherent spin–photon interface in silicon JF - Nature Y1 - 2018 A1 - X. Mi A1 - M. Benito A1 - S. Putz A1 - D. M. Zajac A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin–spin coupling and connections between arbitrary pairs of qubits (‘all-to-all’ connectivity) in a spin-based quantum processor. Realizing coherent spin–photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin–photon interactions is based on spin–charge hybridization in the presence of a magnetic-field gradient. In addition to spin–photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons.

UR - https://www.nature.com/articles/nature25769#author-information U5 - 10.1038/nature25769 ER - TY - JOUR T1 - Dynamic suppression of Rayleigh light scattering in dielectric resonators Y1 - 2018 A1 - Seunghwi Kim A1 - J. M. Taylor A1 - Gaurav Bahl AB -The ultimate limits of performance for any classical optical system are set by sub-wavelength fluctuations within the host material, that may be frozen-in or even dynamically induced. The most common manifestation of such sub-wavelength disorder is Rayleigh light scattering, which is observed in nearly all wave-guiding technologies today and can lead to both irreversible radiative losses as well as undesirable intermodal coupling. While it has been shown that backscattering from disorder can be suppressed by breaking time-reversal symmetry in magneto-optic and topological insulator materials, common optical dielectrics possess neither of these properties. Here we demonstrate an optomechanical approach for dynamically suppressing Rayleigh backscattering within dielectric resonators. We achieve this by locally breaking time-reversal symmetry in a silica resonator through a Brillouin scattering interaction that is available in all materials. Near-complete suppression of Rayleigh backscattering is experimentally confirmed through three independent measurements -- the reduction of the back-reflections caused by scatterers, the elimination of a commonly seen normal-mode splitting effect, and by measurement of the reduction in intrinsic optical loss. More broadly, our results provide new evidence that it is possible to dynamically suppress Rayleigh backscattering within any optical dielectric medium, for achieving robust light propagation in nanophotonic devices in spite of the presence of scatterers or defects.

UR - https://arxiv.org/abs/1803.02366 ER - TY - JOUR T1 - Electro-mechano-optical NMR detection JF - Optica Y1 - 2018 A1 - Kazuyuki Takeda A1 - Kentaro Nagasaka A1 - Atsushi Noguchi A1 - Rekishu Yamazaki A1 - Yasunobu Nakamura A1 - Eiji Iwase A1 - J. M. Taylor A1 - Koji Usami AB -Signal reception of nuclear magnetic resonance (NMR) usually relies on electrical amplification of the electromotive force caused by nuclear induction. Here, we report up-conversion of a radio-frequency NMR signal to an optical regime using a high-stress silicon nitride membrane that interfaces the electrical detection circuit and an optical cavity through the electro-mechanical and the opto-mechanical couplings. This enables optical NMR detection without sacrificing the versatility of the traditional nuclear induction approach. While the signal-to-noise ratio is currently limited by the Brownian motion of the membrane as well as additional technical noise, we find it can exceed that of the conventional electrical schemes by increasing the electro-mechanical coupling strength. The electro-mechano-optical NMR detection presented here can even be combined with the laser cooling technique applied to nuclear spins.

VL - 5 U4 - 152-158 UR - https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-152 CP - 2 U5 - 10.1364/OPTICA.5.000152 ER - TY - JOUR T1 - Electro-optomechanical equivalent circuits for quantum transduction Y1 - 2018 A1 - Emil Zeuthen A1 - Albert Schliesser A1 - J. M. Taylor A1 - Anders S. Sørensen AB -Using the techniques of optomechanics, a high-Q mechanical oscillator may serve as a link between electromagnetic modes of vastly different frequencies. This approach has successfully been exploited for the frequency conversion of classical signals and has the potential of performing quantum state transfer between superconducting circuitry and a traveling optical signal. Such transducers are often operated in a linear regime, where the hybrid system can be described using linear response theory based on the Heisenberg-Langevin equations. While mathematically straightforward to solve, this approach yields little intuition about the dynamics of the hybrid system to aid the optimization of the transducer. As an analysis and design tool for such electro-optomechanical transducers, we introduce an equivalent circuit formalism, where the entire transducer is represented by an electrical circuit. Thereby we integrate the transduction functionality of optomechanical (OM) systems into the toolbox of electrical engineering allowing the use of its well-established design techniques. This unifying impedance description can be applied both for static (DC) and harmonically varying (AC) drive fields, accommodates arbitrary linear circuits, and is not restricted to the resolved-sideband regime. Furthermore, by establishing the quantized input/output formalism for the equivalent circuit, we obtain the scattering matrix for linear transducers using circuit analysis, and thereby have a complete quantum mechanical characterization of the transducer. Hence, this mapping of the entire transducer to the language of electrical engineering both sheds light on how the transducer performs and can at the same time be used to optimize its performance by aiding the design of a suitable electrical circuit.

UR - https://arxiv.org/abs/1710.10136 U5 - https://doi.org/10.1103/PhysRevApplied.10.044036 ER - TY - JOUR T1 - High-fidelity quantum gates in Si/SiGe double quantum dots JF - Physical Review B Y1 - 2018 A1 - Maximilian Russ A1 - D. M. Zajac A1 - A. J. Sigillito A1 - F. Borjans A1 - J. M. Taylor A1 - J. R. Petta A1 - Guido Burkard AB -Motivated by recent experiments of Zajac *et al.* [Science 359, 439 (2018)], we theoretically describe high-fidelity two-qubit gates using the exchange interaction between the spins in neighboring quantum dots subject to a magnetic field gradient. We use a combination of analytical calculations and numerical simulations to provide the optimal pulse sequences and parameter settings for the gate operation. We present a synchronization method which avoids detrimental spin flips during the gate operation and provide details about phase mismatches accumulated during the two-qubit gates which occur due to residual exchange interaction, nonadiabatic pulses, and off-resonant driving. By adjusting the gate times, synchronizing the resonant and off-resonant transitions, and compensating these phase mismatches by phase control, the overall gate fidelity can be increased significantly.

Massless particles, including photons, are not conserved even at low energies and thus have no chemical potential. However, in driven systems, near equilibrium dynamics can lead to equilibration of photons with a finite number, describable using an effective chemical potential. Here we build upon this general concept with an implementation appropriate for a nonlinear photon-based quantum simulator. We consider how laser cooling of a well-isolated mechanical mode can provide an effective low-frequency bath for the quantum simulator system. We show that the use of auxiliary photon modes, coupled by the mechanical system, enables control of both the chemical potential, by drive frequency, and temperature, by drive amplitude, of the resulting photonic quantum simulator's grand canonical ensemble.

UR - https://arxiv.org/abs/1706.00789 U5 - https://doi.org/10.1103/PhysRevA.97.033850 ER - TY - JOUR T1 - Photon thermalization via laser cooling of atoms JF - Phys. Rev. A 98, 013834 Y1 - 2018 A1 - Chiao-Hsuan Wang A1 - Michael Gullans A1 - J. V. Porto A1 - William D. Phillips A1 - J. M. Taylor AB -Laser cooling of atomic motion enables a wide variety of technological and scientific explorations using cold atoms. Here we focus on the effect of laser cooling on the photons instead of on the atoms. Specifically, we show that non-interacting photons can thermalize with the atoms to a grand canonical ensemble with a non-zero chemical potential. This thermalization is accomplished via scattering of light between different optical modes, mediated by the laser cooling process. While optically thin modes lead to traditional laser cooling of the atoms, the dynamics of multiple scattering in optically thick modes has been more challenging to describe. We find that in an appropriate set of limits, multiple scattering leads to thermalization of the light with the atomic motion in a manner that approximately conserves total photon number between the laser beams and optically thick modes. In this regime, the subsystem corresponding to the thermalized modes is describable by a grand canonical ensemble with a chemical potential set by the energy of a single laser photon. We consider realization of this regime using two-level atoms in Doppler cooling, and find physically realistic conditions for rare earth atoms. With the addition of photon-photon interactions, this system could provide a new platform for exploring many-body physics.

UR - https://arxiv.org/abs/1712.08643 U5 - https://doi.org/10.1103/PhysRevA.98.013834 ER - TY - JOUR T1 - Probing electron-phonon interactions in the charge-photon dynamics of cavity-coupled double quantum dots JF - Physical Review B Y1 - 2018 A1 - Michael Gullans A1 - J. M. Taylor A1 - J. R. Petta AB -Electron-phonon coupling is known to play an important role in the charge dynamics of semiconductor quantum dots. Here we explore its role in the combined charge-photon dynamics of cavity-coupled double quantum dots. Previous work on these systems has shown that strong electron-phonon coupling leads to a large contribution to photoemission and gain from phonon-assisted emission and absorption processes. We compare the effects of this phonon sideband in three commonly investigated gate-defined quantum dot material systems: InAs nanowires and GaAs and Si two-dimensional electron gases (2DEGs). We compare our theory with existing experimental data from cavity-coupled InAs nanowire and GaAs 2DEG double quantum dots and find quantitative agreement only when the phonon sideband and photoemission processes during lead tunneling are taken into account. Finally, we show that the phonon sideband also leads to a sizable renormalization of the cavity frequency, which allows for direct spectroscopic probes of the electron-phonon coupling in these systems.

VL - 97 U4 - 035305 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035305 CP - 3 U5 - 10.1103/PhysRevB.97.035305 ER - TY - JOUR T1 - QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments JF - PLOS ONE Y1 - 2018 A1 - Justyna P. Zwolak A1 - Sandesh S. Kalantre A1 - Xingyao Wu A1 - Stephen Ragole A1 - J. M. Taylor AB -Over the past decade, machine learning techniques have revolutionized how research is done, from designing new materials and predicting their properties to assisting drug discovery to advancing cybersecurity. Recently, we added to this list by showing how a machine learning algorithm (a so-called learner) combined with an optimization routine can assist experimental efforts in the realm of tuning semiconductor quantum dot (QD) devices. Among other applications, semiconductor QDs are a candidate system for building quantum computers. The present-day tuning techniques for bringing the QD devices into a desirable configuration suitable for quantum computing that rely on heuristics do not scale with the increasing size of the quantum dot arrays required for even near-term quantum computing demonstrations. Establishing a reliable protocol for tuning that does not rely on the gross-scale heuristics developed by experimentalists is thus of great importance. To implement the machine learning-based approach, we constructed a dataset of simulated QD device characteristics, such as the conductance and the charge sensor response versus the applied electrostatic gate voltages. Here, we describe the methodology for generating the dataset, as well as its validation in training convolutional neural networks. We show that the learner's accuracy in recognizing the state of a device is ~96.5 % in both current- and charge-sensor-based training. We also introduce a tool that enables other researchers to use this approach for further research: QFlow lite - a Python-based mini-software suite that uses the dataset to train neural networks to recognize the state of a device and differentiate between states in experimental data. This work gives the definitive reference for the new dataset that will help enable researchers to use it in their experiments or to develop new machine learning approaches and concepts

VL - 13 U4 - e0205844 UR - https://arxiv.org/abs/1809.10018 CP - 10 U5 - https://doi.org/10.1371/journal.pone.0205844 ER - TY - JOUR T1 - Resonantly driven CNOT gate for electron spins JF - Science Y1 - 2018 A1 - D. M. Zajac A1 - A. J. Sigillito A1 - M. Russ A1 - F. Borjans A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.

VL - 359 U4 - 439-442 UR - http://science.sciencemag.org/content/359/6374/439 CP - 6374 U5 - 10.1126/science.aao5965 ER - TY - JOUR T1 - Tabletop experiments for quantum gravity: a user's manual Y1 - 2018 A1 - Daniel Carney A1 - Philip C. E. Stamp A1 - J. M. Taylor AB -Recent advances in cooling, control, and measurement of mechanical systems in the quantum regime have opened the possibility of the first direct observation of quantum gravity, at scales achievable in experiments. This paper gives a broad overview of this idea, using some matter-wave and optomechanical systems to illustrate the predictions of a variety of models of low-energy quantum gravity. We first review the treatment of perturbatively quantized general relativity as an effective quantum field theory, and consider the particular challenges of observing quantum effects in this framework. We then move on to a variety of alternative models, such as those in which gravity is classical, emergent, or responsible for a breakdown of quantum mechanics.

UR - https://arxiv.org/abs/1807.11494 ER - TY - JOUR T1 - Tabletop experiments for quantum gravity: a user's manual Y1 - 2018 A1 - Daniel Carney A1 - Philip C. E. Stamp A1 - J. M. Taylor AB -Recent advances in cooling, control, and measurement of mechanical systems in the quantum regime have opened the possibility of the first direct observation of quantum gravity, at scales achievable in experiments. This paper gives a broad overview of this idea, using some matter-wave and optomechanical systems to illustrate the predictions of a variety of models of low-energy quantum gravity. We first review the treatment of perturbatively quantized general relativity as an effective quantum field theory, and consider the particular challenges of observing quantum effects in this framework. We then move on to a variety of alternative models, such as those in which gravity is classical, emergent, or responsible for a breakdown of quantum mechanics.

UR - https://arxiv.org/abs/1807.11494 ER - TY - JOUR T1 - Advances in Quantum Reinforcement Learning JF - IEEE SMC, Banff, AB Y1 - 2017 A1 - Vedran Dunjko A1 - J. M. Taylor A1 - Hans J. Briegel AB -In recent times, there has been much interest in quantum enhancements of machine learning, specifically in the context of data mining and analysis. Reinforcement learning, an interactive form of learning, is, in turn, vital in artificial intelligence-type applications. Also in this case, quantum mechanics was shown to be useful, in certain instances. Here, we elucidate these results, and show that quantum enhancements can be achieved in a new setting: the setting of learning models which learn how to improve themselves -- that is, those that meta-learn. While not all learning models meta-learn, all non-trivial models have the potential of being "lifted", enhanced, to meta-learning models. Our results show that also such models can be quantum-enhanced to make even better learners. In parallel, we address one of the bottlenecks of current quantum reinforcement learning approaches: the need for so-called oracularized variants of task environments. Here we elaborate on a method which realizes these variants, with minimal changes in the setting, and with no corruption of the operative specification of the environments. This result may be important in near-term experimental demonstrations of quantum reinforcement learning.

U4 - 282-287 UR - https://arxiv.org/abs/1811.08676 U5 - https://doi.org/10.1109/SMC.2017.8122616 ER - TY - JOUR T1 - Cooling a harmonic oscillator by optomechanical modification of its bath JF - Physical Review Letters Y1 - 2017 A1 - Xunnong Xu A1 - Thomas Purdy A1 - J. M. Taylor AB -Optomechanical systems show tremendous promise for high sensitivity sensing of forces and modification of mechanical properties via light. For example, similar to neutral atoms and trapped ions, laser cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an approach for simultaneously reducing the thermal load on a mechanical resonator while improving its quality factor. In essence, we use the optical interaction to dynamically modify the dominant damping mechanism, providing an optomechanically-induced effect analogous to a phononic band gap. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme.

VL - 118 U4 - 223602 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.223602 U5 - doi.org/10.1103/PhysRevLett.118.223602 ER - TY - JOUR T1 - Dynamically induced robust phonon transport and chiral cooling in an optomechanical system JF - Nature Communications Y1 - 2017 A1 - Seunghwi Kim A1 - Xunnong Xu A1 - J. M. Taylor A1 - Gaurav Bahl AB -The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon the fundamental thermal limits of resonant mechanical sensor, which cannot be otherwise attained through conventional optomechanical cooling.

VL - 8 U4 - 205 UR - https://arxiv.org/abs/1609.08674 U5 - 10.1038/s41467-017-00247-7 ER - TY - JOUR T1 - Efimov States of Strongly Interacting Photons JF - Physical Review Letters Y1 - 2017 A1 - Michael Gullans A1 - S. Diehl A1 - S. T. Rittenhouse A1 - B. P. Ruzic A1 - J. P. D'Incao A1 - P. Julienne A1 - Alexey V. Gorshkov A1 - J. M. Taylor AB -We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity, but with spatially anisotropic wavefunctions in the original coordinates. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium, many-body regime.

VL - 119 U4 - 233601 UR - https://arxiv.org/abs/1709.01955 CP - 23 U5 - 10.1103/PhysRevLett.119.233601 ER - TY - JOUR T1 - Exponential improvements for quantum-accessible reinforcement learning Y1 - 2017 A1 - Vedran Dunjko A1 - Yi-Kai Liu A1 - Xingyao Wu A1 - J. M. Taylor AB -Quantum computers can offer dramatic improvements over classical devices for data analysis tasks such as prediction and classification. However, less is known about the advantages that quantum computers may bring in the setting of reinforcement learning, where learning is achieved via interaction with a task environment. Here, we consider a special case of reinforcement learning, where the task environment allows quantum access. In addition, we impose certain "naturalness" conditions on the task environment, which rule out the kinds of oracle problems that are studied in quantum query complexity (and for which quantum speedups are well-known). Within this framework of quantum-accessible reinforcement learning environments, we demonstrate that quantum agents can achieve exponential improvements in learning efficiency, surpassing previous results that showed only quadratic improvements. A key step in the proof is to construct task environments that encode well-known oracle problems, such as Simon's problem and Recursive Fourier Sampling, while satisfying the above "naturalness" conditions for reinforcement learning. Our results suggest that quantum agents may perform well in certain game-playing scenarios, where the game has recursive structure, and the agent can learn by playing against itself

UR - https://arxiv.org/abs/1710.11160 ER - TY - JOUR T1 - High-Order Multipole Radiation from Quantum Hall States in Dirac Materials JF - Physical Review B Y1 - 2017 A1 - Michael Gullans A1 - J. M. Taylor A1 - Atac Imamoglu A1 - Pouyan Ghaemi A1 - Mohammad Hafezi AB -Topological states can exhibit electronic coherence on macroscopic length scales. When the coherence length exceeds the wavelength of light, one can expect new phenomena to occur in the optical response of these states. We theoretically characterize this limit for integer quantum Hall states in two-dimensional Dirac materials. We find that the radiation from the bulk is dominated by dipole emission, whose spectral properties vary with the local disorder potential. On the other hand, the radiation from the edge is characterized by large multipole moments in the far-field associated with the efficient transfer of angular momentum from the electrons into the scattered light. These results demonstrate that high-order multipole transitions are a necessary component for the optical spectroscopy and control of quantum Hall and related topological states in electronic systems.

VL - 95 U4 - 235439 UR - https://arxiv.org/abs/1701.03464 CP - 23 U5 - 10.1103/PhysRevB.95.235439 ER - TY - JOUR T1 - Input-output theory for spin-photon coupling in Si double quantum dots JF - Physical Review B Y1 - 2017 A1 - Benito, M. A1 - Mi, X. A1 - J. M. Taylor A1 - Petta, J. R. A1 - Burkard, Guido AB -The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

VL - 96 U4 - 235434 UR - https://link.aps.org/doi/10.1103/PhysRevB.96.235434 CP - 23 U5 - 10.1103/PhysRevB.96.235434 ER - TY - JOUR T1 - Machine Learning techniques for state recognition and auto-tuning in quantum dots Y1 - 2017 A1 - Sandesh S. Kalantre A1 - Justyna P. Zwolak A1 - Stephen Ragole A1 - Xingyao Wu A1 - Neil M. Zimmerman A1 - M. D. Stewart A1 - J. M. Taylor AB -Recent progress in building large-scale quantum devices for exploring quantum computing and simulation paradigms has relied upon effective tools for achieving and maintaining good experimental parameters, i.e. tuning up devices. In many cases, including in quantum-dot based architectures, the parameter space grows substantially with the number of qubits, and may become a limit to scalability. Fortunately, machine learning techniques for pattern recognition and image classification using so-called deep neural networks have shown surprising successes for computer-aided understanding of complex systems. In this work, we use deep and convolutional neural networks to characterize states and charge configurations of semiconductor quantum dot arrays when one can only measure a current-voltage characteristic of transport (here conductance) through such a device. For simplicity, we model a semiconductor nanowire connected to leads and capacitively coupled to depletion gates using the Thomas-Fermi approximation and Coulomb blockade physics. We then generate labeled training data for the neural networks, and find at least 90 % accuracy for charge and state identification for single and double dots purely from the dependence of the nanowire’s conductance upon gate voltages. Using these characterization networks, we can then optimize the parameter space to achieve a desired configuration of the array, a technique we call ‘auto-tuning’. Finally, we show how such techniques can be implemented in an experimental setting by applying our approach to an experimental data set, and outline further problems in this domain, from using charge sensing data to extensions to full one and two-dimensional arrays, that can be tackled with machine learning.

UR - https://arxiv.org/abs/1712.04914 ER - TY - JOUR T1 - Optomechanical Analogy for Toy Cosmology with Quantized Scale Factor JF - Entropy Y1 - 2017 A1 - Smiga, Joseph A. A1 - J. M. Taylor AB -The simplest cosmologyâ€”the Friedmannâ€“Robertsonâ€“Walkerâ€“LemaÃ®tre (FRW) modelâ€” describes a spatially homogeneous and isotropic universe where the scale factor is the only dynamical parameter. Here we consider how quantized electromagnetic fields become entangled with the scale factor in a toy version of the FRW model. A system consisting of a photon, source, and detector is described in such a universe, and we find that the detection of a redshifted photon by the detector system constrains possible scale factor superpositions. Thus, measuring the redshift of the photon is equivalent to a weak measurement of the underlying cosmology. We also consider a potential optomechanical analogy system that would enable experimental exploration of these concepts. The analogy focuses on the effects of photon redshift measurement as a quantum back-action on metric variables, where the position of a movable mirror plays the role of the scale factor. By working in the rotating frame, an effective Hubble equation can be simulated with a simple free moving mirror.

VL - 19 UR - http://www.mdpi.com/1099-4300/19/9/485 CP - 9 U5 - 10.3390/e19090485 ER - TY - JOUR T1 - Optomechanically-induced chiral transport of phonons in one dimension Y1 - 2017 A1 - Xunnong Xu A1 - J. M. Taylor AB -Non-reciprocal devices, with one-way transport properties, form a key component for isolating and controlling light in photonic systems. Optomechanical systems have emerged as a potential platform for optical non-reciprocity, due to ability of a pump laser to break time and parity symmetry in the system. Here we consider how the non-reciprocal behavior of light can also impact the transport of sound in optomechanical devices. We focus on the case of a quasi one dimensional optical ring resonator with many mechanical modes coupled to light via the acousto-optic effect. The addition of disorder leads to finite diffusion for phonon transport in the material, largely due to elastic backscattering between clockwise and counter-clockwise phonons. We show that a laser pump field, along with the assumption of high quality-factor, sideband-resolved optical resonances, suppresses the effects of disorder and leads to the emergence of chiral diffusion, with direction-dependent diffusion emerging in a bandwidth similar to the phase-matching bandwidth for Brillouin scattering. A simple diagrammatic theory connects the observation of reduced mechanical linewidths directly to the associated phonon diffusion properties, and helps explain recent experimental results.

UR - https://arxiv.org/abs/1701.02699 ER - TY - JOUR T1 - Quantum simulation of ferromagnetic Heisenberg model Y1 - 2017 A1 - Yiping Wang A1 - Minh C. Tran A1 - J. M. Taylor AB -Large quantum simulators, with sufficiently many qubits to be impossible to simulate classically, become hard to experimentally validate. We propose two tests of a quantum simulator with Heisenberg interaction in a linear chain of spins. In the first, we propagate half of a singlet state through a chain of spin with a ferromagnetic interaction and subsequently recover the state with an antiferromagnetic interaction. The antiferromagnetic interaction is intrinsic to the system while the ferromagnetic one can be simulated by a sequence of time-dependent controls of the antiferromagnetic interaction and Suzuki-Trotter approximations. In the second test, we use the same technique to transfer a spin singlet state from one end of a spin chain to the other. We show that the tests are robust against parametric errors in operation of the simulator and may be applicable even without error correction.

UR - https://arxiv.org/abs/1712.05282 ER - TY - JOUR T1 - Super-polynomial and exponential improvements for quantum-enhanced reinforcement learning Y1 - 2017 A1 - Vedran Dunjko A1 - Yi-Kai Liu A1 - Xingyao Wu A1 - J. M. Taylor AB -Recent work on quantum machine learning has demonstrated that quantum computers can offer dramatic improvements over classical devices for data mining, prediction and classification. However, less is known about the advantages using quantum computers may bring in the more general setting of reinforcement learning, where learning is achieved via interaction with a task environment that provides occasional rewards. Reinforcement learning can incorporate data-analysis-oriented learning settings as special cases, but also includes more complex situations where, e.g., reinforcing feedback is delayed. In a few recent works, Grover-type amplification has been utilized to construct quantum agents that achieve up-to-quadratic improvements in learning efficiency. These encouraging results have left open the key question of whether super-polynomial improvements in learning times are possible for genuine reinforcement learning problems, that is problems that go beyond the other more restricted learning paradigms. In this work, we provide a family of such genuine reinforcement learning tasks. We construct quantum-enhanced learners which learn super-polynomially, and even exponentially faster than any classical reinforcement learning model, and we discuss the potential impact our results may have on future technologies.

UR - https://arxiv.org/abs/1710.11160 ER - TY - JOUR T1 - Thermodynamic limits for optomechanical systems with conservative potentials JF - Physical Review B Y1 - 2017 A1 - Stephen Ragole A1 - Haitan Xu A1 - John Lawall A1 - J. M. Taylor AB -The mechanical force from light – radiation pressure – provides an intrinsic nonlinear interaction. Consequently, optomechanical systems near their steady state, such as the canonical optical spring, can display non-analytic behavior as a function of external parameters. This non-analyticity, a key feature of thermodynamic phase transitions, suggests that there could be an effective thermodynamic description of optomechanical systems. Here we explicitly define the thermodynamic limit for optomechanical systems and derive a set of sufficient constraints on the system parameters as the mechanical system grows large. As an example, we show how these constraints can be satisfied in a system with Z2 symmetry and derive a free energy, allowing us to characterize this as an equilibrium phase transition.

VL - 96 U4 - 184106 UR - https://arxiv.org/abs/1707.05771 CP - 18 U5 - 10.1103/PhysRevB.96.184106 ER - TY - JOUR T1 - Threshold Dynamics of a Semiconductor Single Atom Maser JF - Physical Review Letters Y1 - 2017 A1 - Liu, Y.-Y. A1 - Stehlik, J. A1 - Eichler, C. A1 - Mi, X. A1 - Hartke, T. R. A1 - Michael Gullans A1 - J. M. Taylor A1 - Petta, J. R. AB -We demonstrate a single atom maser consisting of a semiconductor double quantum dot (DQD) that is embedded in a high-quality-factor microwave cavity. A finite bias drives the DQD out of equilibrium, resulting in sequential single electron tunneling and masing. We develop a dynamic tuning protocol that allows us to controllably increase the time-averaged repumping rate of the DQD at a fixed level detuning, and quantitatively study the transition through the masing threshold. We further examine the crossover from incoherent to coherent emission by measuring the photon statistics across the masing transition. The observed threshold behavior is in agreement with an existing single atom maser theory when small corrections from lead emission are taken into account.

VL - 119 U4 - 097702 UR - https://link.aps.org/doi/10.1103/PhysRevLett.119.097702 CP - 9 U5 - 10.1103/PhysRevLett.119.097702 ER - TY - JOUR T1 - Valley Blockade in a Silicon Double Quantum Dot JF - Physical Review B Y1 - 2017 A1 - Justin K. Perron A1 - Michael Gullans A1 - J. M. Taylor A1 - M. D. Stewart, Jr. A1 - Neil M. Zimmerman AB -Electrical transport in double quantum dots (DQDs) illuminates many interesting features of the dots' carrier states. Recent advances in silicon quantum information technologies have renewed interest in the valley states of electrons confined in silicon. Here we show measurements of DC transport through a mesa-etched silicon double quantum dot. Comparing bias triangles (i.e., regions of allowed current in DQDs) at positive and negative bias voltages we find a systematic asymmetry in the size of the bias triangles at the two bias polarities. Asymmetries of this nature are associated with blocking of tunneling events due to the occupation of a metastable state. Several features of our data lead us to conclude that the states involved are not simple spin states. Rather, we develop a model based on selective filling of valley states in the DQD that is consistent with all of the qualitative features of our data.

VL - 96 U4 - 205302 UR - https://arxiv.org/abs/1607.06107 CP - 20 U5 - 10.1103/PhysRevB.96.205302 ER - TY - JOUR T1 - Double Quantum Dot Floquet Gain Medium JF - Physical Review X Y1 - 2016 A1 - J. Stehlik A1 - Y.-Y. Liu A1 - C. Eichler A1 - T. R. Hartke A1 - X. Mi A1 - Michael Gullans A1 - J. M. Taylor A1 - J. R. Petta AB -Strongly driving a two-level quantum system with light leads to a ladder of Floquet states separated by the photon energy. Nanoscale quantum devices allow the interplay of confined electrons, phonons, and photons to be studied under strong driving conditions. Here we show that a single electron in a periodically driven DQD functions as a "Floquet gain medium," where population imbalances in the DQD Floquet quasi-energy levels lead to an intricate pattern of gain and loss features in the cavity response. We further measure a large intra-cavity photon number n_c in the absence of a cavity drive field, due to equilibration in the Floquet picture. Our device operates in the absence of a dc current -- one and the same electron is repeatedly driven to the excited state to generate population inversion. These results pave the way to future studies of non-classical light and thermalization of driven quantum systems.

VL - 6 U4 - 041027 UR - http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041027 U5 - 10.1103/PhysRevX.6.041027 ER - TY - JOUR T1 - Entangling distant resonant exchange qubits via circuit quantum electrodynamics JF - Physical Review B Y1 - 2016 A1 - V. Srinivasa A1 - J. M. Taylor A1 - C. Tahan AB -We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

VL - 94 U4 - 205421 UR - https://doi.org/10.1103/PhysRevB.94.205421 CP - 20 U5 - 10.1103/PhysRevB.94.205421 ER - TY - JOUR T1 - Figures of merit for quantum transducers Y1 - 2016 A1 - Emil Zeuthen A1 - Albert Schliesser A1 - Anders S. Sørensen A1 - J. M. Taylor AB -Recent technical advances have sparked renewed interest in physical systems that couple simultaneously to different parts of the electromagnetic spectrum, thus enabling transduction of signals between vastly different frequencies at the level of single photons. Such hybrid systems have demonstrated frequency conversion of classical signals and have the potential of enabling quantum state transfer, e.g., between superconducting circuits and traveling optical signals. This Letter describes a simple approach for the theoretical characterization of performance for quantum transducers. Given that, in practice, one cannot attain ideal one-to-one quantum conversion, we will explore how well the transducer performs in various scenarios ranging from classical signal detection to applications for quantum information processing. While the performance of the transducer depends on the particular application in which it enters, we show that the performance can be characterized by defining two simple parameters: the signal transfer efficiency

Atom interferometers provide exquisite measurements of the properties of non-inertial frames. While atomic interactions are typically detrimental to good sensing, efforts to harness entanglement to improve sensitivity remain tantalizing. Here we explore the role of interactions in an analogy between atomic gyroscopes and SQUIDs, motivated by recent experiments realizing ring shaped traps for ultracold atoms. We explore the one-dimensional limit of these ring systems with a moving weak barrier, such as that provided by a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting phase-slip qubit, in which the topological charge associated with persistent currents can be put into superposition. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to an equivalent non-interacting atom interferometer, and find improvements in sensitivity and bandwidth beyond the atomic shot-noise limit.

VL - 117 U4 - 203002 UR - https://doi.org/10.1103/PhysRevLett.117.203002 CP - 20 U5 - 10.1103/PhysRevLett.117.203002 ER - TY - JOUR T1 - Landauer formulation of photon transport in driven systems JF - Physical Review B Y1 - 2016 A1 - Chiao-Hsuan Wang A1 - J. M. Taylor AB -Understanding the behavior of light in non-equilibrium scenarios underpins much of quantum optics and optical physics. While lasers provide a severe example of a non-equilibrium problem, recent interests in the near-equilibrium physics of photon `gases', such as in Bose condensation of light or in attempts to make photonic quantum simulators, suggest one reexamine some near-equilibrium cases. Here we consider how a sinusoidal parametric coupling between two semi-infinite photonic transmission lines leads to the creation and flow of photons between the two lines. Our approach provides a photonic analogue to the Landauer transport formula, and using non-equilbrium Green's functions, we can extend it to the case of an interacting region between two photonic `leads' where the sinusoid frequency plays the role of a voltage bias. Crucially, we identify both the mathematical framework and the physical regime in which photonic transport is directly analogous to electronic transport, and regimes in which other new behavior such as two-mode squeezing can emerge.

VL - 94 U4 - 155437 UR - https://doi.org/10.1103/PhysRevB.94.155437 CP - 15 U5 - 10.1103/PhysRevB.94.155437 ER - TY - JOUR T1 - Observation of Optomechanical Quantum Correlations at Room Temperature Y1 - 2016 A1 - T. P. Purdy A1 - K. E. Grutter A1 - K. Srinivasan A1 - J. M. Taylor AB -By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical forces at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. Such quantum backaction is typically difficult to observe at room temperature where the motion driven by optical quantum intensity fluctuations is many orders of magnitude smaller than the thermal motion. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. While it is often difficult to absolutely calibrate optical detection, we use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path towards absolute thermometry with quantum mechanically calibrated ticks.

UR - http://arxiv.org/abs/1605.05664 ER - TY - JOUR T1 - A Quantum Model for an Entropic Spring JF - Physical Review B Y1 - 2016 A1 - Chiao-Hsuan Wang A1 - J. M. Taylor AB -Motivated by understanding the emergence of thermodynamic restoring forces and oscillations, we develop a quantum-mechanical model of a bath of spins coupled to the elasticity of a material. We show our model reproduces the behavior of a variety of entropic springs while enabling investigation of non-equilibrium resonator states in the quantum domain. We find our model emerges naturally in disordered elastic media such as glasses, and is an additional, expected effect in systems with anomalous specific heat and 1/f noise at low temperatures due to two-level systems that fluctuate.

VL - 93 U4 - 214102 UR - http://arxiv.org/abs/1507.08658v1 CP - 21 U5 - http://dx.doi.org/10.1103/PhysRevB.93.214102 ER - TY - JOUR T1 - Quantum-Enhanced Machine Learning JF - Physical Review Letters Y1 - 2016 A1 - Dunjko, Vedran A1 - J. M. Taylor A1 - Briegel, Hans J. AB -The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

VL - 117 U4 - 130501 UR - http://link.aps.org/doi/10.1103/PhysRevLett.117.130501 CP - 13 U5 - 10.1103/PhysRevLett.117.130501 ER - TY - JOUR T1 - A quasi-mode theory of chiral phonons Y1 - 2016 A1 - Xunnong Xu A1 - Seunghwi Kim A1 - Gaurav Bahl A1 - J. M. Taylor AB -The coherence properties of mechanical resonators are often limited by multiple unavoidable forms of loss -- including phonon-phonon and phonon-defect scattering -- which result in the scattering of sound into other resonant modes and into the phonon bath. Dynamic suppression of this scattering loss can lift constraints on device structure and can improve tolerance to defects in the material, even after fabrication. Inspired by recent experiments, here we introduce a model of phonon losses resulting from disorder in a whispering gallery mode resonator with acousto-optical coupling between optical and mechanical modes. We show that a typical elastic scattering mechanism of high quality factor (Q) mechanical modes flips the direction of phonon propagation via high-angle scattering, leading to damping into modes with the opposite parity. When the optical mode overlaps co-propagating high-Q and bulk mechanical modes, the addition of laser cooling via sideband-resolved damping of the mechanical mode of a chosen parity also damps and modifies the response of the bulk modes of the same parity. This, in turn, simultaneously improves the quality factor and reduces the thermal load of the counter-propagating high-Q modes, leading to the dynamical creation of a cold phononic shield. We compare our theoretical results to the recent experiments of Kim et al., and find quantitative agreement with our theory.

UR - https://arxiv.org/abs/1612.09240 ER - TY - JOUR T1 - Serialized Quantum Error Correction Protocol for High-Bandwidth Quantum Repeaters JF - New Journal of Physics Y1 - 2016 A1 - Andrew N. Glaudell A1 - Edo Waks A1 - J. M. Taylor AB -Advances in single photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code. Such error-corrected communication is equivalent to a novel quantum repeater scheme, but crucial questions regarding implementation and system requirements remain open. Here we show that long range entangled bit generation with rates approaching $10^8$ ebits/s may be possible using a completely serialized protocol, in which photons are generated, entangled, and error corrected via sequential, one-way interactions with a minimal number of matter qubits. Provided loss and error rates of the required elements are below the threshold for quantum error correction, this scheme demonstrates improved performance over transmission of single photons. We find improvement in ebit rates at large distances using this serial protocol and various quantum error correcting codes.

VL - 18 U4 - 093008 UR - http://iopscience.iop.org/article/10.1088/1367-2630/18/9/093008/meta CP - 9 U5 - 10.1088/1367-2630/18/9/093008 ER - TY - JOUR T1 - Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot JF - Physical Review Letters Y1 - 2016 A1 - Michael Gullans A1 - J. Stehlik A1 - Y. -Y. Liu A1 - J. R. Petta A1 - J. M. Taylor AB -A strongly driven quantum system, coupled to a thermalizing bath, generically evolves into a highly non-thermal state as the external drive competes with the equilibrating force of the bath. We demonstrate a notable exception to this picture for a microwave resonator interacting with a periodically driven double quantum dot (DQD). In the limit of strong driving and long times, we show that the resonator field can be driven into a thermal state with a chemical potential given by a harmonic of the drive frequency. Such tunable chemical potentials are achievable with current devices and would have broad utility for quantum simulation in circuit quantum electrodynamics. As an example, we show how several DQDs embedded in an array of microwave resonators can induce a phase transition to a Bose-Einstein condensate of light.

VL - 117 U4 - 056801 UR - http://arxiv.org/abs/1512.01248 CP - 5 U5 - http://dx.doi.org/10.1103/PhysRevLett.117.056801 ER - TY - JOUR T1 - Bounds on quantum communication via Newtonian gravity JF - New Journal of Physics Y1 - 2015 A1 - D. Kafri A1 - G. J. Milburn A1 - J. M. Taylor AB - Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a $1/r^2$ force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a $1/r^2$ force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication. VL - 17 U4 - 015006 UR - http://arxiv.org/abs/1404.3214v2 CP - 1 J1 - New J. Phys. U5 - 10.1088/1367-2630/17/1/015006 ER - TY - JOUR T1 - Capacitively coupled singlet-triplet qubits in the double charge resonant regime JF - Physical Review B Y1 - 2015 A1 - V. Srinivasa A1 - J. M. Taylor AB - We investigate a method for entangling two singlet-triplet qubits in adjacent double quantum dots via capacitive interactions. In contrast to prior work, here we focus on a regime with strong interactions between the qubits. The interplay of the interaction energy and simultaneous large detunings for both double dots gives rise to the double charge resonant regime, in which the unpolarized (1111) and fully polarized (0202) four-electron states in the absence of interqubit tunneling are near degeneracy, while being energetically well-separated from the partially polarized (0211 and 1102) states. A controlled-phase gate may be realized by combining time evolution in this regime in the presence of intraqubit tunneling and the interqubit Coulomb interaction with refocusing {\pi} pulses that swap the singly occupied singlet and triplet states of the two qubits via, e.g., magnetic gradients. We calculate the fidelity of this entangling gate, incorporating models for two types of noise - classical, Gaussian-distributed charge fluctuations in the single-qubit detunings and charge relaxation within the low-energy subspace via electron-phonon interaction - and identify parameter regimes that optimize the fidelity. The rates of phonon-induced decay for pairs of GaAs or Si double quantum dots vary with the sizes of the dipolar and quadrupolar contributions and are several orders of magnitude smaller for Si, leading to high theoretical gate fidelities for coupled singlet-triplet qubits in Si dots. We also consider the dependence of the capacitive coupling on the relative orientation of the double dots and find that a linear geometry provides the fastest potential gate. VL - 92 U4 - 235301 UR - http://arxiv.org/abs/1408.4740v2 CP - 23 ER - TY - JOUR T1 - A chemical potential for light JF - Physical Review B Y1 - 2015 A1 - M. Hafezi A1 - P. Adhikari A1 - J. M. Taylor AB - Photons are not conserved in interactions with other matter. Consequently, when understanding the equation of state and thermodynamics of photons, while we have a concept of temperature for energy conservation, there is no equivalent chemical potential for particle number conservation. However, the notion of a chemical potential is crucial in understanding a wide variety of single- and many-body effects, from transport in conductors and semi-conductors to phase transitions in electronic and atomic systems. Here we show how a direct modification of the system-bath coupling via parametric oscillation creates an effective chemical potential for photons even in the thermodynamic limit. Specific implementations, using circuit-QED or optomechanics, are feasible using current technologies, and we show a detailed example demonstrating the emergence of Mott Insulator-superfluid transition in a lattice of nonlinear oscillators. Our approach paves the way for quantum simulation, quantum sources and even electron-like circuits with light. VL - 92 U4 - 174305 UR - http://arxiv.org/abs/1405.5821v2 CP - 17 U5 - 10.1103/PhysRevB.92.174305 ER - TY - JOUR T1 - Framework for learning agents in quantum environments Y1 - 2015 A1 - Vedran Dunjko A1 - J. M. Taylor A1 - Hans J. Briegel AB - In this paper we provide a broad framework for describing learning agents in general quantum environments. We analyze the types of classically specified environments which allow for quantum enhancements in learning, by contrasting environments to quantum oracles. We show that whether or not quantum improvements are at all possible depends on the internal structure of the quantum environment. If the environments are constructed and the internal structure is appropriately chosen, or if the agent has limited capacities to influence the internal states of the environment, we show that improvements in learning times are possible in a broad range of scenarios. Such scenarios we call luck-favoring settings. The case of constructed environments is particularly relevant for the class of model-based learning agents, where our results imply a near-generic improvement. UR - http://arxiv.org/abs/1507.08482v1 ER - TY - JOUR T1 - From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating JF - Annalen der Physik Y1 - 2015 A1 - Corey Stambaugh A1 - Haitan Xu A1 - Utku Kemiktarak A1 - J. M. Taylor A1 - John Lawall AB - We demonstrate a "membrane in the middle" optomechanical system using a silicon nitride membrane patterned as a subwavelength grating. The grating has a reflectivity of over 99.8%, effectively creating two sub-cavities, with free spectral ranges of 6 GHz, optically coupled via photon tunneling. Measurements of the transmission and reflection spectra show an avoided crossing where the two sub-cavities simultaneously come into resonance, with a frequency splitting of 54 MHz. We derive expressions for the lineshapes of the symmetric and antisymmetric modes at the avoided crossing, and infer the grating reflection, transmission, absorption, and scattering through comparison with the experimental data. VL - 527 U4 - 81 - 88 UR - http://arxiv.org/abs/1407.1709v1 CP - 1-2 J1 - ANNALEN DER PHYSIK U5 - 10.1002/andp.201400142 ER - TY - JOUR T1 - Injection Locking of a Semiconductor Double Quantum Dot Micromaser JF - Physical Review A Y1 - 2015 A1 - Y. -Y. Liu A1 - J. Stehlik A1 - Michael Gullans A1 - J. M. Taylor A1 - J. R. Petta AB - Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. VL - 92 U4 - 053802 UR - http://arxiv.org/abs/1508.04147 CP - 5 U5 - 10.1103/PhysRevA.92.053802 ER - TY - JOUR T1 - Observation of optomechanical buckling phase transitions Y1 - 2015 A1 - Haitan Xu A1 - Utku Kemiktarak A1 - Jingyun Fan A1 - Stephen Ragole A1 - John Lawall A1 - J. M. Taylor AB -Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets, and potential exotic quantum materials. Mechanical systems, such as relays and buckling transition spring switches can yield similar stability by exploiting non-equilibrium phase transitions. Curiously, in the optical domain, observations of such phase transitions remain elusive. However, efforts to integrate optical and mechanical systems -- optomechanics -- suggest that a hybrid approach combining the quantum control of optical systems with the engineerability of mechanical systems may provide a new avenue for such explorations. Here we report the first observation of the buckling of an optomechanical system, in which transitions between stable mechanical states corresponding to both first- and second-order phase transitions are driven by varying laser power and detuning. Our results enable new applications in photonics and, given rapid progress in pushing optomechanical systems into the quantum regime, the potential for explorations of quantum phase transitions.

UR - http://arxiv.org/abs/1510.04971v1 ER - TY - JOUR T1 - Optical Control of Donor Spin Qubits in Silicon JF - Physical Review B Y1 - 2015 A1 - Michael Gullans A1 - J. M. Taylor AB - We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the goup-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon $\Lambda$-transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective $\Lambda$-transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons. VL - 92 U4 - 195411 UR - http://arxiv.org/abs/1507.07929 CP - 19 U5 - 10.1103/PhysRevB.92.195411 ER - TY - JOUR T1 - Optomechanical reference accelerometer JF - Metrologia Y1 - 2015 A1 - Oliver Gerberding A1 - Felipe Guzman Cervantes A1 - John Melcher A1 - Jon R. Pratt A1 - J. M. Taylor AB -We present an optomechanical accelerometer with high dynamic range, high bandwidth and read-out noise levels below 8 ${\mu}$g/$\sqrt{\mathrm{Hz}}$. The straightforward assembly and low cost of our device make it a prime candidate for on-site reference calibrations and autonomous navigation. We present experimental data taken with a vacuum sealed, portable prototype and deduce the achieved bias stability and scale factor accuracy. Additionally, we present a comprehensive model of the device physics that we use to analyze the fundamental noise sources and accuracy limitations of such devices.

VL - 52 U4 - 654 UR - http://iopscience.iop.org/article/10.1088/0026-1394/52/5/654/meta;jsessionid=C2B417A5CD50B9B57EE14C78E1783802.ip-10-40-1-105 CP - 5 U5 - 10.1088/0026-1394/52/5/654 ER - TY - JOUR T1 - Phonon-Assisted Gain in a Semiconductor Double Quantum Dot Maser JF - Physical Review Letters Y1 - 2015 A1 - Michael Gullans A1 - Y. -Y. Liu A1 - J. Stehlik A1 - J. R. Petta A1 - J. M. Taylor AB - We develop a microscopic model for the recently demonstrated double quantum dot (DQD) maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from the simultaneous emission of a photon and a phonon, i.e., the phonon sideband. We show that this phonon-assisted gain typically dominates the overall gain which leads to masing. Recent experimental data are well fit with our model. VL - 114 U4 - 196802 UR - http://arxiv.org/abs/1501.03499v3 CP - 19 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.114.196802 ER - TY - JOUR T1 - Quantum Nonlinear Optics Near Optomechanical Instabilities JF - Physical Review A Y1 - 2015 A1 - Xunnong Xu A1 - Michael Gullans A1 - J. M. Taylor AB - Optomechanical systems provide a unique platform for observing quantum behavior of macroscopic objects. However, efforts towards realizing nonlinear behavior at the single photon level have been inhibited by the small size of the radiation pressure interaction. Here we show that it is not necessary to reach the single-photon strong-coupling regime in order to realize significant optomechanical nonlinearities. Instead, nonlinearities at the few quanta level can be achieved, even with weak-coupling, in a two-mode optomechanical system driven near instability. In this limit, we establish a new figure of merit for realizing strong nonlinearity which scales with the single-photon optomechanical coupling and the sideband resolution of the mechanical mode with respect to the cavity linewidth. We find that current devices based on optomechanical crystals, thought to be in the weak-coupling regime, can still achieve strong quantum nonlinearity; enabling deterministic interactions between single photons. VL - 91 U4 - 013818 UR - http://arxiv.org/abs/1404.3726v2 CP - 1 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.91.013818 ER - TY - JOUR T1 - Semiconductor double quantum dot micromaser JF - Science Y1 - 2015 A1 - Y. -Y. Liu A1 - J. Stehlik A1 - C. Eichler A1 - Michael Gullans A1 - J. M. Taylor A1 - J. R. Petta AB - The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from THz sources to quantum communication. Here we demonstrate a maser that is driven by single electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside of a high quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. VL - 347 U4 - 285 - 287 UR - http://arxiv.org/abs/1507.06359v1 CP - 6219 J1 - Science U5 - 10.1126/science.aaa2501 ER - TY - JOUR T1 - Tunable Spin Qubit Coupling Mediated by a Multi-Electron Quantum Dot JF - Physical Review Letters Y1 - 2015 A1 - V. Srinivasa A1 - H. Xu A1 - J. M. Taylor AB - We present an approach for entangling electron spin qubits localized on spatially separated impurity atoms or quantum dots via a multi-electron, two-level quantum dot. The effective exchange interaction mediated by the dot can be understood as the simplest manifestation of Ruderman-Kittel-Kasuya-Yosida exchange, and can be manipulated through gate voltage control of level splittings and tunneling amplitudes within the system. This provides both a high degree of tuneability and a means for realizing high-fidelity two-qubit gates between spatially separated spins, yielding an experimentally accessible method of coupling donor electron spins in silicon via a hybrid impurity-dot system. VL - 114 U4 - 226803 UR - http://arxiv.org/abs/1312.1711v3 CP - 22 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.114.226803 ER - TY - JOUR T1 - A classical channel model for gravitational decoherence JF - New Journal of Physics Y1 - 2014 A1 - D. Kafri A1 - J. M. Taylor A1 - G. J. Milburn AB - We show that, by treating the gravitational interaction between two mechanical resonators as a classical measurement channel, a gravitational decoherence model results that is equivalent to a model first proposed by Diosi. The resulting decoherence model implies that the classically mediated gravitational interaction between two gravitationally coupled resonators cannot create entanglement. The gravitational decoherence rate ( and the complementary heating rate) is of the order of the gravitationally induced normal mode splitting of the two resonators. VL - 16 U4 - 065020 UR - http://arxiv.org/abs/1401.0946v1 CP - 6 J1 - New J. Phys. U5 - 10.1088/1367-2630/16/6/065020 ER - TY - JOUR T1 - Optical detection of radio waves through a nanomechanical transducer JF - Nature Y1 - 2014 A1 - T. Bagci A1 - A. Simonsen A1 - S. Schmid A1 - L. G. Villanueva A1 - E. Zeuthen A1 - J. Appel A1 - J. M. Taylor A1 - A. Sørensen A1 - K. Usami A1 - A. Schliesser A1 - E. S. Polzik AB - Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals to an optical carrier would allow transmitting them via optical fibers dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics has shown that nanomechanical oscillators can couple very strongly to either microwave or optical fields. An oscillator accommodating both functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an opto-electro-mechanical transducer utilizing a high-Q nanomembrane. A moderate voltage bias (<10V) is sufficient to induce strong coupling between the voltage fluctuations in a rf resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators. The noise added by the membrane is suppressed by the electro-mechanical cooperativity C~6800 and has a temperature of 40mK, far below 300K where the entire device is operated. This corresponds to a sensitivity limit as low as 5 pV/Hz^1/2, or -210dBm/Hz in a narrow band around 1 MHz. Our work introduces an entirely new approach to all-optical, ultralow-noise detection of classical electronic signals, and sets the stage for coherent upconversion of low-frequency quantum signals to the optical domain. VL - 507 U4 - 81 - 85 UR - http://arxiv.org/abs/1307.3467v2 CP - 7490 J1 - Nature U5 - 10.1038/nature13029 ER - TY - JOUR T1 - A Quantum Network of Silicon Qubits using Mid-Infrared Graphene Plasmons Y1 - 2014 A1 - Michael Gullans A1 - J. M. Taylor AB - We consider a quantum network of mid-infrared, graphene plasmons coupled to the hydrogen-like excited states of group-V donors in silicon. First, we show how to use plasmon-enhanced light-matter interactions to achieve single-shot spin readout of the donor qubits via optical excitation and electrical detection of the emitted plasmons. We then show how plasmons in high mobility graphene nanoribbons can be used to achieve high-fidelity, two-qubit gates and entanglement of distant Si donor qubits. The proposed device is readily compatible with existing technology and fabrication methods. UR - http://arxiv.org/abs/1407.7035v1 ER - TY - JOUR T1 - Electrically-protected resonant exchange qubits in triple quantum dots JF - Physical Review Letters Y1 - 2013 A1 - J. M. Taylor A1 - V. Srinivasa A1 - J. Medford AB - We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates. VL - 111 UR - http://arxiv.org/abs/1304.3407v2 CP - 5 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.111.050502 ER - TY - JOUR T1 - A noise inequality for classical forces Y1 - 2013 A1 - Dvir Kafri A1 - J. M. Taylor AB - Lorentz invariance requires local interactions, with force laws such as the Coulomb interaction arising via virtual exchange of force carriers such as photons. Many have considered the possibility that, at long distances or large mass scales, this process changes in some way to lead to classical behavior. Here we hypothesize that classical behavior could be due to an inability of some force carriers to convey entanglement, a characteristic measure of nonlocal, quantum behavior. We then prove that there exists a local test that allows one to verify entanglement generation, falsifying our hypothesis. Crucially, we show that noise measurements can directly verify entanglement generation. This provides a step forward for a wide variety of experimental systems where traditional entanglement tests are challenging, including entanglement generation by gravity alone between macroscopic torsional oscillators. UR - http://arxiv.org/abs/1311.4558v1 ER - TY - JOUR T1 - Preparation of Non-equilibrium Nuclear Spin States in Double Quantum Dots JF - Physical Review B Y1 - 2013 A1 - Michael Gullans A1 - J. J. Krich A1 - J. M. Taylor A1 - B. I. Halperin A1 - M. D. Lukin AB - We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. In our prior work [Phys. Rev. Lett. 104, 226807 (2010)] we identified three regimes of long-term dynamics, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. In particular, when the dots are different sizes we found that the Overhauser field becomes larger in the smaller dot. Here we present a detailed theoretical analysis of these problems including a model of the polarization dynamics and the development of a new numerical method to efficiently simulate semiclassical central-spin problems. When nuclear spin noise is included, the results agree with our prior work indicating that large difference fields and dark states are stable configurations, while the elimination of the difference field is unstable; however, in the absence of noise we find all three steady states are achieved depending on parameters. These results are in good agreement with dynamic nuclear polarization experiments in double quantum dots. VL - 88 UR - http://arxiv.org/abs/1212.6953v3 CP - 3 J1 - Phys. Rev. B U5 - 10.1103/PhysRevB.88.035309 ER - TY - JOUR T1 - The Resonant Exchange Qubit JF - Physical Review Letters Y1 - 2013 A1 - J. Medford A1 - J. Beil A1 - J. M. Taylor A1 - E. I. Rashba A1 - H. Lu A1 - A. C. Gossard A1 - C. M. Marcus AB - We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment. VL - 111 UR - http://arxiv.org/abs/1304.3413v2 CP - 5 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.111.050501 ER - TY - JOUR T1 - Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit JF - Nature Nanotechnology Y1 - 2013 A1 - J. Medford A1 - J. Beil A1 - J. M. Taylor A1 - S. D. Bartlett A1 - A. C. Doherty A1 - E. I. Rashba A1 - D. P. DiVincenzo A1 - H. Lu A1 - A. C. Gossard A1 - C. M. Marcus AB - We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes. VL - 8 U4 - 654 - 659 UR - http://arxiv.org/abs/1302.1933v1 CP - 9 J1 - Nature Nanotech U5 - 10.1038/nnano.2013.168 ER - TY - JOUR T1 - Algorithmic Cooling of a Quantum Simulator Y1 - 2012 A1 - Dvir Kafri A1 - J. M. Taylor AB - Controlled quantum mechanical devices provide a means of simulating more complex quantum systems exponentially faster than classical computers. Such "quantum simulators" rely heavily upon being able to prepare the ground state of Hamiltonians, whose properties can be used to calculate correlation functions or even the solution to certain classical computations. While adiabatic preparation remains the primary means of producing such ground states, here we provide a different avenue of preparation: cooling to the ground state via simulated dissipation. This is in direct analogy to contemporary efforts to realize generalized forms of simulated annealing in quantum systems. UR - http://arxiv.org/abs/1207.7111v1 ER - TY - JOUR T1 - The equilibrium states of open quantum systems in the strong coupling regime JF - Physical Review E Y1 - 2012 A1 - Y. Subasi A1 - C. H. Fleming A1 - J. M. Taylor A1 - B. L. Hu AB - In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations. VL - 86 UR - http://arxiv.org/abs/1206.2707v1 CP - 6 J1 - Phys. Rev. E U5 - 10.1103/PhysRevE.86.061132 ER - TY - JOUR T1 - Quantum interface between an electrical circuit and a single atom JF - Physical Review Letters Y1 - 2012 A1 - D. Kielpinski A1 - D. Kafri A1 - M. J. Woolley A1 - G. J. Milburn A1 - J. M. Taylor AB - We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards. VL - 108 UR - http://arxiv.org/abs/1111.5999v1 CP - 13 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.108.130504 ER - TY - JOUR T1 - Fast and robust quantum computation with ionic Wigner crystals JF - Physical Review A Y1 - 2011 A1 - J. D. Baltrusch A1 - A. Negretti A1 - J. M. Taylor A1 - T. Calarco AB - We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme. VL - 83 UR - http://arxiv.org/abs/1011.5616v2 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.042319 ER - TY - JOUR T1 - Interferometry with Synthetic Gauge Fields JF - Physical Review A Y1 - 2011 A1 - Brandon M. Anderson A1 - J. M. Taylor A1 - Victor M. Galitski AB - We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S~10^-7 m / s^2 / Hz^1/2. VL - 83 UR - http://arxiv.org/abs/1008.3910v2 CP - 3 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.031602 ER - TY - JOUR T1 - Laser cooling and optical detection of excitations in a LC electrical circuit JF - Physical Review Letters Y1 - 2011 A1 - J. M. Taylor A1 - A. S. Sørensen A1 - C. M. Marcus A1 - E. S. Polzik AB - We explore a method for laser cooling and optical detection of excitations in a LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electro-mechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an "optical loud speaker" are outlined. VL - 107 UR - http://arxiv.org/abs/1108.2035v1 CP - 27 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.107.273601 ER - TY - JOUR T1 - Unified approach to topological quantum computation with anyons: From qubit encoding to Toffoli gate JF - Physical Review A Y1 - 2011 A1 - Haitan Xu A1 - J. M. Taylor AB - Topological quantum computation may provide a robust approach for encoding and manipulating information utilizing the topological properties of anyonic quasi-particle excitations. We develop an efficient means to map between dense and sparse representations of quantum information (qubits) and a simple construction of multi-qubit gates, for all anyon models from Chern-Simons-Witten SU(2)$_k$ theory that support universal quantum computation by braiding ($k\geq 3,\ k \neq 4$). In the process, we show how the constructions of topological quantum memory and gates for $k=2,4$ connect naturally to those for $k\geq 3,\ k \neq 4$, unifying these concepts in a simple framework. Furthermore, we illustrate potential extensions of these ideas to other anyon models outside of Chern-Simons-Witten field theory. VL - 84 UR - http://arxiv.org/abs/1001.4085v2 CP - 1 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.84.012332 ER - TY - JOUR T1 - Dynamic Nuclear Polarization in Double Quantum Dots JF - Physical Review Letters Y1 - 2010 A1 - Michael Gullans A1 - J. J. Krich A1 - J. M. Taylor A1 - H. Bluhm A1 - B. I. Halperin A1 - C. M. Marcus A1 - M. Stopa A1 - A. Yacoby A1 - M. D. Lukin AB - We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process. VL - 104 UR - http://arxiv.org/abs/1003.4508v2 CP - 22 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.104.226807 ER - TY - JOUR T1 - Coherence of an optically illuminated single nuclear spin qubit JF - Physical Review Letters Y1 - 2008 A1 - Liang Jiang A1 - M. V. Gurudev Dutt A1 - Emre Togan A1 - Lily Childress A1 - Paola Cappellaro A1 - J. M. Taylor A1 - Mikhail D. Lukin AB - We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment. VL - 100 UR - http://arxiv.org/abs/0707.1341v2 CP - 7 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.100.073001 ER - TY - JOUR T1 - High-sensitivity diamond magnetometer with nanoscale resolution JF - Nature Physics Y1 - 2008 A1 - J. M. Taylor A1 - P. Cappellaro A1 - L. Childress A1 - L. Jiang A1 - D. Budker A1 - P. R. Hemmer A1 - A. Yacoby A1 - R. Walsworth A1 - M. D. Lukin AB - We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz$^{1/2}$. VL - 4 U4 - 810 - 816 UR - http://arxiv.org/abs/0805.1367v1 CP - 10 J1 - Nat Phys U5 - 10.1038/nphys1075 ER - TY - JOUR T1 - Wigner crystals of ions as quantum hard drives JF - Physical Review A Y1 - 2008 A1 - J. M. Taylor A1 - T. Calarco AB - Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum simulation and information processing. Focusing on laser cooled ions forming Wigner crystals in Penning traps, we find a robust and simple approach to engineering non-trivial 2-body interactions sufficient for universal quantum computation. We then consider extensions of our approach to the fast generation of large cluster states, and a non-local architecture using an asymmetric entanglement generation procedure between a Penning trap system and well-established linear Paul trap designs. VL - 78 UR - http://arxiv.org/abs/0706.1951v1 CP - 6 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.78.062331 ER - TY - JOUR T1 - A fast and robust approach to long-distance quantum communication with atomic ensembles JF - Physical Review A Y1 - 2007 A1 - L. Jiang A1 - J. M. Taylor A1 - M. D. Lukin AB - Quantum repeaters create long-distance entanglement between quantum systems while overcoming difficulties such as the attenuation of single photons in a fiber. Recently, an implementation of a repeater protocol based on single qubits in atomic ensembles and linear optics has been proposed [Nature 414, 413 (2001)]. Motivated by rapid experimental progress towards implementing that protocol, here we develop a more efficient scheme compatible with active purification of arbitrary errors. Using similar resources as the earlier protocol, our approach intrinsically purifies leakage out of the logical subspace and all errors within the logical subspace, leading to greatly improved performance in the presence of experimental inefficiencies. Our analysis indicates that our scheme could generate approximately one pair per 3 minutes over 1280 km distance with fidelity (F>78%) sufficient to violate Bell's inequality. VL - 76 UR - http://arxiv.org/abs/quant-ph/0609236v3 CP - 1 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.76.012301 ER - TY - JOUR T1 - A quantum dot implementation of the quantum NAND algorithm Y1 - 2007 A1 - J. M. Taylor AB - We propose a physical implementation of the quantum NAND tree evaluation algorithm. Our approach, based on continuous time quantum walks, uses the wave interference of a single electron in a heirarchical set of tunnel coupled quantum dots. We find that the query complexity of the NAND tree evaluation does not suffer strongly from disorder and dephasing, nor is it directly limited by temperature or restricted dimensionality for 2-d structures. Finally, we suggest a potential application of this algorithm to the efficient determination of high-order correlation functions of complex quantum systems. UR - http://arxiv.org/abs/0708.1484v1 ER - TY - JOUR T1 - Relaxation, dephasing, and quantum control of electron spins in double quantum dots JF - Physical Review B Y1 - 2007 A1 - J. M. Taylor A1 - J. R. Petta A1 - A. C. Johnson A1 - A. Yacoby A1 - C. M. Marcus A1 - M. D. Lukin AB - Recent experiments have demonstrated quantum manipulation of two-electron spin states in double quantum dots using electrically controlled exchange interactions. Here, we present a detailed theory for electron spin dynamics in two-electron double dot systems that was used to guide these experiments and analyze experimental results. The theory treats both charge and spin degrees of freedom on an equal basis. Specifically, we analyze the relaxation and dephasing mechanisms that are relevant to experiments and discuss practical approaches for quantum control of two-electron system. We show that both charge and spin dephasing play important roles in the dynamics of the two-spin system, but neither represents a fundamental limit for electrical control of spin degrees of freedom in semiconductor quantum bits. VL - 76 UR - http://arxiv.org/abs/cond-mat/0602470v2 CP - 3 J1 - Phys. Rev. B U5 - 10.1103/PhysRevB.76.035315 ER - TY - JOUR T1 - Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip Y1 - 2006 A1 - J. M. Taylor A1 - M. D. Lukin AB - We describe a coherent control technique for coupling electron spin states associated with semiconductor double-dot molecule to a microwave stripline resonator on a chip. We identify a novel regime of operation in which strong interaction between a molecule and a resonator can be achieved with minimal decoherence, reaching the so-called strong coupling regime of cavity QED. We describe potential applications of such a system, including low-noise coherent electrical control, fast QND measurements of spin states, and long-range spin coupling. UR - http://arxiv.org/abs/cond-mat/0605144v1 ER - TY - JOUR T1 - Fault-tolerant Quantum Communication with Minimal Physical Requirements JF - Physical Review Letters Y1 - 2006 A1 - L. Childress A1 - J. M. Taylor A1 - A. S. Sorensen A1 - M. D. Lukin AB - We describe a novel protocol for a quantum repeater which enables long distance quantum communication through realistic, lossy photonic channels. Contrary to previous proposals, our protocol incorporates active purification of arbitrary errors at each step of the protocol using only two qubits at each repeater station. Because of these minimal physical requirements, the present protocol can be realized in simple physical systems such as solid-state single photon emitters. As an example, we show how nitrogen vacancy color centers in diamond can be used to implement the protocol, using the nuclear and electronic spin to form the two qubits. VL - 96 UR - http://arxiv.org/abs/quant-ph/0410123v3 CP - 7 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.96.070504 ER - TY - JOUR T1 - Dephasing of quantum bits by a quasi-static mesoscopic environment Y1 - 2005 A1 - J. M. Taylor A1 - M. D. Lukin AB - We examine coherent processes in a two-state quantum system that is strongly coupled to a mesoscopic spin bath and weakly coupled to other environmental degrees of freedom. Our analysis is specifically aimed at understanding the quantum dynamics of solid-state quantum bits such as electron spins in semiconductor structures and superconducting islands. The role of mesoscopic degrees of freedom with long correlation times (local degrees of freedom such as nuclear spins and charge traps) in qubit-related dephasing is discussed in terms of a quasi-static bath. A mathemat- ical framework simultaneously describing coupling to the slow mesoscopic bath and a Markovian environment is developed and the dephasing and decoherence properties of the total system are investigated. The model is applied to several specific examples with direct relevance to current ex- periments. Comparisons to experiments suggests that such quasi-static degrees of freedom play an important role in current qubit implementations. Several methods of mitigating the bath-induced error are considered. UR - http://arxiv.org/abs/quant-ph/0512059v2 ER - TY - JOUR T1 - Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters JF - Physical Review A Y1 - 2005 A1 - L. I. Childress A1 - J. M. Taylor A1 - A. S. Sorensen A1 - M. D. Lukin AB - We analyze a novel method that uses fixed, minimal physical resources to achieve generation and nested purification of quantum entanglement for quantum communication over arbitrarily long distances, and discuss its implementation using realistic photon emitters and photonic channels. In this method, we use single photon emitters with two internal degrees of freedom formed by an electron spin and a nuclear spin to build intermediate nodes in a quantum channel. State-selective fluorescence is used for probabilistic entanglement generation between electron spins in adjacent nodes. We analyze in detail several approaches which are applicable to realistic, homogeneously broadened single photon emitters. Furthermore, the coupled electron and nuclear spins can be used to efficiently implement entanglement swapping and purification. We show that these techniques can be combined to generate high-fidelity entanglement over arbitrarily long distances. We present a specific protocol that functions in polynomial time and tolerates percent-level errors in entanglement fidelity and local operations. The scheme has the lowest requirements on physical resources of any current scheme for fully fault-tolerant quantum repeaters. VL - 72 UR - http://arxiv.org/abs/quant-ph/0502112v1 CP - 5 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.72.052330 ER - TY - JOUR T1 - Solid-state circuit for spin entanglement generation and purification JF - Physical Review Letters Y1 - 2005 A1 - J. M. Taylor A1 - W. Dür A1 - P. Zoller A1 - A. Yacoby A1 - C. M. Marcus A1 - M. D. Lukin AB - We show how realistic charge manipulation and measurement techniques, combined with the exchange interaction, allow for the robust generation and purification of four-particle spin entangled states in electrically controlled semiconductor quantum dots. The generated states are immunized to the dominant sources of noise via a dynamical decoherence-free subspace; all additional errors are corrected by a purification protocol. This approach may find application in quantum computation, communication, and metrology. VL - 94 UR - http://arxiv.org/abs/cond-mat/0503255v2 CP - 23 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.94.236803 ER - TY - JOUR T1 - Quantum information processing using localized ensembles of nuclear spins Y1 - 2004 A1 - J. M. Taylor A1 - G. Giedke A1 - H. Christ A1 - B. Paredes A1 - J. I. Cirac A1 - P. Zoller A1 - M. D. Lukin A1 - A. Imamoglu AB - We describe a technique for quantum information processing based on localized en sembles of nuclear spins. A qubit is identified as the presence or absence of a collective excitation of a mesoscopic ensemble of nuclear spins surrounding a single quantum dot. All single and two-qubit operations can be effected using hyperfine interactions and single-electron spin rotations, hence the proposed scheme avoids gate errors arising from entanglement between spin and orbital degrees of freedom. Ultra-long coherence times of nuclear spins suggest that this scheme could be particularly well suited for applications where long lived memory is essential. UR - http://arxiv.org/abs/cond-mat/0407640v2 ER - TY - JOUR T1 - Controlling a mesoscopic spin environment by quantum bit manipulation JF - Physical Review Letters Y1 - 2003 A1 - J. M. Taylor A1 - A. Imamoglu A1 - M. D. Lukin AB - We present a unified description of cooling and manipulation of a mesoscopic bath of nuclear spins via coupling to a single quantum system of electronic spin (quantum bit). We show that a bath cooled by the quantum bit rapidly saturates. Although the resulting saturated states of the spin bath (``dark states'') generally have low degrees of polarization and purity, their symmetry properties make them a valuable resource for the coherent manipulation of quantum bits. Specifically, we demonstrate that the dark states of nuclear ensembles can be used to coherently control the system-bath interaction and to provide a robust, long-lived quantum memory for qubit states. VL - 91 UR - http://arxiv.org/abs/cond-mat/0308459v1 CP - 24 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.91.246802 ER - TY - JOUR T1 - Long-lived memory for mesoscopic quantum bits JF - Physical Review Letters Y1 - 2003 A1 - J. M. Taylor A1 - C. M. Marcus A1 - M. D. Lukin AB - We describe a technique to create long-lived quantum memory for quantum bits in mesoscopic systems. Specifically we show that electronic spin coherence can be reversibly mapped onto the collective state of the surrounding nuclei. The coherent transfer can be efficient and fast and it can be used, when combined with standard resonance techniques, to reversibly store coherent superpositions on the time scale of seconds. This method can also allow for ``engineering'' entangled states of nuclear ensembles and efficiently manipulating the stored states. We investigate the feasibility of this method through a detailed analysis of the coherence properties of the system. VL - 90 UR - http://arxiv.org/abs/cond-mat/0301323v1 CP - 20 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.90.206803 ER -