TY - JOUR T1 - Accelerating Progress Towards Practical Quantum Advantage: The Quantum Technology Demonstration Project Roadmap Y1 - 2023 A1 - Paul Alsing A1 - Phil Battle A1 - Joshua C. Bienfang A1 - Tammie Borders A1 - Tina Brower-Thomas A1 - Lincoln D. Carr A1 - Fred Chong A1 - Siamak Dadras A1 - Brian DeMarco A1 - Ivan Deutsch A1 - Eden Figueroa A1 - Danna Freedman A1 - Henry Everitt A1 - Daniel Gauthier A1 - Ezekiel Johnston-Halperin A1 - Jungsang Kim A1 - Mackillo Kira A1 - Prem Kumar A1 - Paul Kwiat A1 - John Lekki A1 - Anjul Loiacono A1 - Marko Lončar A1 - John R. Lowell A1 - Mikhail Lukin A1 - Celia Merzbacher A1 - Aaron Miller A1 - Christopher Monroe A1 - Johannes Pollanen A1 - David Pappas A1 - Michael Raymer A1 - Ronald Reano A1 - Brandon Rodenburg A1 - Martin Savage A1 - Thomas Searles A1 - Jun Ye AB -

Quantum information science and technology (QIST) is a critical and emerging technology with the potential for enormous world impact and is currently invested in by over 40 nations. To bring these large-scale investments to fruition and bridge the lower technology readiness levels (TRLs) of fundamental research at universities to the high TRLs necessary to realize the promise of practical quantum advantage accessible to industry and the public, we present a roadmap for Quantum Technology Demonstration Projects (QTDPs). Such QTDPs, focused on intermediate TRLs, are large-scale public-private partnerships with a high probability of translation from laboratory to practice. They create technology demonstrating a clear 'quantum advantage' for science breakthroughs that are user-motivated and will provide access to a broad and diverse community of scientific users. Successful implementation of a program of QTDPs will have large positive economic impacts.

UR - https://arxiv.org/abs/2210.14757 ER - TY - JOUR T1 - Development of Quantum InterConnects for Next-Generation Information Technologies Y1 - 2019 A1 - David Awschalom A1 - Karl K. Berggren A1 - Hannes Bernien A1 - Sunil Bhave A1 - Lincoln D. Carr A1 - Paul Davids A1 - Sophia E. Economou A1 - Dirk Englund A1 - Andrei Faraon A1 - Marty Fejer A1 - Saikat Guha A1 - Martin V. Gustafsson A1 - Evelyn Hu A1 - Liang Jiang A1 - Jungsang Kim A1 - Boris Korzh A1 - Prem Kumar A1 - Paul G. Kwiat A1 - Marko Lončar A1 - Mikhail D. Lukin A1 - David A. B. Miller A1 - Christopher Monroe A1 - Sae Woo Nam A1 - Prineha Narang A1 - Jason S. Orcutt AB -

Just as classical information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the interconnect, a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a quantum internet poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on Quantum Interconnects that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry and national laboratories is required. This document is a summary from a U.S. National Science Foundation supported workshop held on 31 October - 1 November 2019 in Alexandria, VA. Attendees were charged to identify the scientific and community needs, opportunities, and significant challenges for quantum interconnects over the next 2-5 years. 

UR - https://arxiv.org/abs/1912.06642 ER -