TY - JOUR T1 - Many-Body Dephasing in a Trapped-Ion Quantum Simulator JF - Phys. Rev. Lett. Y1 - 2020 A1 - Harvey B. Kaplan A1 - Lingzhen Guo A1 - Wen Lin Tan A1 - Arinjoy De A1 - Florian Marquardt A1 - Guido Pagano A1 - Christopher Monroe AB -

How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics. In this work, we observe and analyse the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator. We measure the temporal fluctuations in the average magnetization of a finite-size system of spin-1/2 particles and observe the experimental evidence for the theoretically predicted regime of many-body dephasing. We experiment in a regime where the properties of the system are closely related to the integrable Hamiltonian with global spin-spin coupling, which enables analytical predictions even for the long-time non-integrable dynamics. We find that the measured fluctuations are exponentially suppressed with increasing system size, consistent with theoretical predictions. 

VL - 125 UR - https://arxiv.org/abs/2001.02477 CP - 120605 U5 - https://doi.org/10.1103/PhysRevLett.125.120605 ER -