TY - JOUR T1 - Accelerating Progress Towards Practical Quantum Advantage: The Quantum Technology Demonstration Project Roadmap Y1 - 2023 A1 - Paul Alsing A1 - Phil Battle A1 - Joshua C. Bienfang A1 - Tammie Borders A1 - Tina Brower-Thomas A1 - Lincoln D. Carr A1 - Fred Chong A1 - Siamak Dadras A1 - Brian DeMarco A1 - Ivan Deutsch A1 - Eden Figueroa A1 - Danna Freedman A1 - Henry Everitt A1 - Daniel Gauthier A1 - Ezekiel Johnston-Halperin A1 - Jungsang Kim A1 - Mackillo Kira A1 - Prem Kumar A1 - Paul Kwiat A1 - John Lekki A1 - Anjul Loiacono A1 - Marko Lončar A1 - John R. Lowell A1 - Mikhail Lukin A1 - Celia Merzbacher A1 - Aaron Miller A1 - Christopher Monroe A1 - Johannes Pollanen A1 - David Pappas A1 - Michael Raymer A1 - Ronald Reano A1 - Brandon Rodenburg A1 - Martin Savage A1 - Thomas Searles A1 - Jun Ye AB -

Quantum information science and technology (QIST) is a critical and emerging technology with the potential for enormous world impact and is currently invested in by over 40 nations. To bring these large-scale investments to fruition and bridge the lower technology readiness levels (TRLs) of fundamental research at universities to the high TRLs necessary to realize the promise of practical quantum advantage accessible to industry and the public, we present a roadmap for Quantum Technology Demonstration Projects (QTDPs). Such QTDPs, focused on intermediate TRLs, are large-scale public-private partnerships with a high probability of translation from laboratory to practice. They create technology demonstrating a clear 'quantum advantage' for science breakthroughs that are user-motivated and will provide access to a broad and diverse community of scientific users. Successful implementation of a program of QTDPs will have large positive economic impacts.

UR - https://arxiv.org/abs/2210.14757 ER - TY - JOUR T1 - Quantum Computer Systems for Scientific Discovery Y1 - 2019 A1 - Yuri Alexeev A1 - Dave Bacon A1 - Kenneth R. Brown A1 - Robert Calderbank A1 - Lincoln D. Carr A1 - Frederic T. Chong A1 - Brian DeMarco A1 - Dirk Englund A1 - Edward Farhi A1 - Bill Fefferman A1 - Alexey V. Gorshkov A1 - Andrew Houck A1 - Jungsang Kim A1 - Shelby Kimmel A1 - Michael Lange A1 - Seth Lloyd A1 - Mikhail D. Lukin A1 - Dmitri Maslov A1 - Peter Maunz A1 - Christopher Monroe A1 - John Preskill A1 - Martin Roetteler A1 - Martin Savage A1 - Jeff Thompson A1 - Umesh Vazirani AB -

The great promise of quantum computers comes with the dual challenges of building them and finding their useful applications. We argue that these two challenges should be considered together, by co-designing full stack quantum computer systems along with their applications in order to hasten their development and potential for scientific discovery. In this context, we identify scientific and community needs, opportunities, and significant challenges for the development of quantum computers for science over the next 2-10 years. This document is written by a community of university, national laboratory, and industrial researchers in the field of Quantum Information Science and Technology, and is based on a summary from a U.S. National Science Foundation workshop on Quantum Computing held on October 21-22, 2019 in Alexandria, VA.

UR - https://arxiv.org/abs/1912.07577 ER - TY - JOUR T1 - Quantum Simulators: Architectures and Opportunities Y1 - 2019 A1 - Ehud Altman A1 - Kenneth R. Brown A1 - Giuseppe Carleo A1 - Lincoln D. Carr A1 - Eugene Demler A1 - Cheng Chin A1 - Brian DeMarco A1 - Sophia E. Economou A1 - Mark A. Eriksson A1 - Kai-Mei C. Fu A1 - Markus Greiner A1 - Kaden R. A. Hazzard A1 - Randall G. Hulet A1 - Alicia J. Kollár A1 - Benjamin L. Lev A1 - Mikhail D. Lukin A1 - Ruichao Ma A1 - Xiao Mi A1 - Shashank Misra A1 - Christopher Monroe A1 - Kater Murch A1 - Zaira Nazario A1 - Kang-Kuen Ni A1 - Andrew C. Potter A1 - Pedram Roushan AB -

Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behaviors to explore and solve hard scientific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the NSF workshop on "Programmable Quantum Simulators," that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multi-disciplinary collaborations with resources for quantum simulator software, hardware, and education. 

UR - https://arxiv.org/abs/1912.06938 ER -