TY - JOUR T1 - Coherence of an optically illuminated single nuclear spin qubit JF - Physical Review Letters Y1 - 2008 A1 - Liang Jiang A1 - M. V. Gurudev Dutt A1 - Emre Togan A1 - Lily Childress A1 - Paola Cappellaro A1 - J. M. Taylor A1 - Mikhail D. Lukin AB - We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment. VL - 100 UR - http://arxiv.org/abs/0707.1341v2 CP - 7 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.100.073001 ER - TY - JOUR T1 - Signatures of incoherence in a quantum information processor Y1 - 2007 A1 - Michael K. Henry A1 - Alexey V. Gorshkov A1 - Yaakov S. Weinstein A1 - Paola Cappellaro A1 - Joseph Emerson A1 - Nicolas Boulant A1 - Jonathan S. Hodges A1 - Chandrasekhar Ramanathan A1 - Timothy F. Havel A1 - Rudy Martinez A1 - David G. Cory AB - Incoherent noise is manifest in measurements of expectation values when the underlying ensemble evolves under a classical distribution of unitary processes. While many incoherent processes appear decoherent, there are important differences. The distribution functions underlying incoherent processes are either static or slowly varying with respect to control operations and so the errors introduced by these distributions are refocusable. The observation and control of incoherence in small Hilbert spaces is well known. Here we explore incoherence during an entangling operation, such as is relevant in quantum information processing. As expected, it is more difficult to separate incoherence and decoherence over such processes. However, by studying the fidelity decay under a cyclic entangling map we are able to identify distinctive experimental signatures of incoherence. This result is demonstrated both through numerical simulations and experimentally in a three qubit nuclear magnetic resonance implementation. UR - http://arxiv.org/abs/0705.3666v2 ER -