TY - JOUR T1 - On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble Y1 - 2020 A1 - Dalia P. Ornelas-Huerta A1 - Alexander N. Craddock A1 - Elizabeth A. Goldschmidt A1 - Andrew J. Hachtel A1 - Yidan Wang A1 - P. Bienias A1 - Alexey V. Gorshkov A1 - Steve L. Rolston A1 - James V. Porto AB -

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)×10−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources. 

UR - https://arxiv.org/abs/2003.02202 ER - TY - JOUR T1 - Interference of Temporally Distinguishable Photons Using Frequency-Resolved Detection JF - Phys. Rev. Lett. Y1 - 2019 A1 - Venkata Vikram Orre A1 - Elizabeth A. Goldschmidt A1 - Abhinav Deshpande A1 - Alexey V. Gorshkov A1 - Vincenzo Tamma A1 - Mohammad Hafezi A1 - Sunil Mittal AB -

We demonstrate quantum interference of three photons that are distinguishable in time, by resolving them in the conjugate parameter, frequency. We show that the multiphoton interference pattern in our setup can be manipulated by tuning the relative delays between the photons, without the need for reconfiguring the optical network. Furthermore, we observe that the symmetries of our optical network and the spectral amplitude of the input photons are manifested in the interference pattern. Moreover, we demonstrate time-reversed HOM-like interference in the spectral correlations using time-bin entangled photon pairs. By adding a time-varying dispersion using a phase modulator, our setup can be used to realize dynamically reconfigurable and scalable boson sampling in the time domain as well as frequency-resolved multiboson correlation sampling.

VL - 123 UR - https://arxiv.org/abs/1904.03222 CP - 123603 U5 - https://doi.org/10.1103/PhysRevLett.123.123603 ER - TY - JOUR T1 - Dissipation induced dipole blockade and anti-blockade in driven Rydberg systems JF - Phys. Rev. A Y1 - 2018 A1 - Jeremy T. Young A1 - Thomas Boulier A1 - Eric Magnan A1 - Elizabeth A. Goldschmidt A1 - Ryan M. Wilson A1 - Steven L. Rolston A1 - James V. Porto A1 - Alexey V. Gorshkov AB -

We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al.Phys. Rev. Lett. 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

VL - 97 U4 - 023424 UR - https://link.aps.org/doi/10.1103/PhysRevA.97.023424 U5 - 10.1103/PhysRevA.97.023424 ER -