Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii--Kosterlitz--Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

UR - https://arxiv.org/abs/1803.04113 U5 - https://doi.org/10.1103/PhysRevB.98.060501 ER - TY - JOUR T1 - Electro-mechano-optical NMR detection JF - Optica Y1 - 2018 A1 - Kazuyuki Takeda A1 - Kentaro Nagasaka A1 - Atsushi Noguchi A1 - Rekishu Yamazaki A1 - Yasunobu Nakamura A1 - Eiji Iwase A1 - Jacob M. Taylor A1 - Koji Usami AB -Signal reception of nuclear magnetic resonance (NMR) usually relies on electrical amplification of the electromotive force caused by nuclear induction. Here, we report up-conversion of a radio-frequency NMR signal to an optical regime using a high-stress silicon nitride membrane that interfaces the electrical detection circuit and an optical cavity through the electro-mechanical and the opto-mechanical couplings. This enables optical NMR detection without sacrificing the versatility of the traditional nuclear induction approach. While the signal-to-noise ratio is currently limited by the Brownian motion of the membrane as well as additional technical noise, we find it can exceed that of the conventional electrical schemes by increasing the electro-mechanical coupling strength. The electro-mechano-optical NMR detection presented here can even be combined with the laser cooling technique applied to nuclear spins.

VL - 5 U4 - 152-158 UR - https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-152 CP - 2 U5 - 10.1364/OPTICA.5.000152 ER - TY - JOUR T1 - Probing ground-state phase transitions through quench dynamics Y1 - 2018 A1 - Paraj Titum A1 - Joseph T. Iosue A1 - James R. Garrison A1 - Alexey V. Gorshkov A1 - Zhe-Xuan Gong AB -The study of quantum phase transitions requires the preparation of a many-body system near its ground state, a challenging task for many experimental systems. The measurement of quench dynamics, on the other hand, is now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of quantum phase transitions can be probed directly with quench dynamics in integrable and nearly integrable systems. As a paradigmatic example, we study global quench dynamics in a transverse-field Ising model with either short-range or long-range interactions. When the model is integrable, we discover a new dynamical critical point with a non-analytic signature in the short-range correlators. The location of the dynamical critical point matches that of the quantum critical point and can be identified using a finite-time scaling method. We extend this scaling picture to systems near integrability and demonstrate the continued existence of a dynamical critical point detectable at prethermal time scales. Therefore, our method can be used to approximately locate the quantum critical point. The scaling method is also relevant to experiments with finite time and system size, and our predictions are testable in near-term experiments with trapped ions and Rydberg atoms.

UR - https://arxiv.org/abs/1809.06377 ER - TY - JOUR T1 - High-Order Multipole Radiation from Quantum Hall States in Dirac Materials JF - Physical Review B Y1 - 2017 A1 - Michael Gullans A1 - Jacob M. Taylor A1 - Atac Imamoglu A1 - Pouyan Ghaemi A1 - Mohammad Hafezi AB -Topological states can exhibit electronic coherence on macroscopic length scales. When the coherence length exceeds the wavelength of light, one can expect new phenomena to occur in the optical response of these states. We theoretically characterize this limit for integer quantum Hall states in two-dimensional Dirac materials. We find that the radiation from the bulk is dominated by dipole emission, whose spectral properties vary with the local disorder potential. On the other hand, the radiation from the edge is characterized by large multipole moments in the far-field associated with the efficient transfer of angular momentum from the electrons into the scattered light. These results demonstrate that high-order multipole transitions are a necessary component for the optical spectroscopy and control of quantum Hall and related topological states in electronic systems.

VL - 95 U4 - 235439 UR - https://arxiv.org/abs/1701.03464 CP - 23 U5 - 10.1103/PhysRevB.95.235439 ER - TY - JOUR T1 - On the readiness of quantum optimization machines for industrial applications Y1 - 2017 A1 - Alejandro Perdomo-Ortiz A1 - Alexander Feldman A1 - Asier Ozaeta A1 - Sergei V. Isakov A1 - Zheng Zhu A1 - Bryan O'Gorman A1 - Helmut G. Katzgraber A1 - Alexander Diedrich A1 - Hartmut Neven A1 - Johan de Kleer A1 - Brad Lackey A1 - Rupak Biswas AB -There have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum annealing on quantum annealing machines, has the potential to outperform current classical optimization algorithms implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially, random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to highlight the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not perform well on them. Even worse, to date a true sign of improved scaling with the number problem variables remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum annealing machines for real-world application problems. These are typically not random and have an underlying structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the instances generated from real data in multiplier circuits are harder than other representative random spin-glass benchmarks with a comparable number of variables. Although our results show that transverse-field quantum annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are hard and small in the size of the input, therefore representing the first industrial application ideally suited for near-term quantum annealers.

UR - https://arxiv.org/abs/1708.09780 ER - TY - JOUR T1 - Mapping constrained optimization problems to quantum annealing with application to fault diagnosis Y1 - 2016 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Israel, Robert A1 - Lackey, Brad A1 - Macready, William G A1 - Roy, Aidan AB - Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware. UR - http://arxiv.org/abs/1603.03111 ER - TY - JOUR T1 - Mapping contrained optimization problems to quantum annealing with application to fault diagnosis JF - Frontiers in ICT Y1 - 2016 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Robert Brian Israel A1 - Brad Lackey A1 - Macready, William G A1 - Aiden Roy AB -Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping Boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular, we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. By contrast, global embedding techniques generate a hardware-independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of the D-Wave hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D- Wave’s QA hardware to circuit-based fault diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000 N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Furthermore, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.

VL - 3 U4 - 14 UR - http://journal.frontiersin.org/article/10.3389/fict.2016.00014/full ER - TY - JOUR T1 - Discrete optimization using quantum annealing on sparse Ising models JF - Frontiers in Physics Y1 - 2014 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Israel, Robert A1 - Brad Lackey A1 - Macready, William G A1 - Roy, Aidan AB - This paper discusses techniques for solving discrete optimization problems using quantum annealing. Practical issues likely to affect the computation include precision limitations, finite temperature, bounded energy range, sparse connectivity, and small numbers of qubits. To address these concerns we propose a way of finding energy representations with large classical gaps between ground and first excited states, efficient algorithms for mapping non-compatible Ising models into the hardware, and the use of decomposition methods for problems that are too large to fit in hardware. We validate the approach by describing experiments with D-Wave quantum hardware for low density parity check decoding with up to 1000 variables. PB - Frontiers VL - 2 U4 - 56 ER - TY - JOUR T1 - Quantum computation of discrete logarithms in semigroups JF - Journal of Mathematical Cryptology Y1 - 2014 A1 - Andrew M. Childs A1 - GĂˇbor Ivanyos AB - We describe an efficient quantum algorithm for computing discrete logarithms in semigroups using Shor's algorithms for period finding and discrete log as subroutines. Thus proposed cryptosystems based on the presumed hardness of discrete logarithms in semigroups are insecure against quantum attacks. In contrast, we show that some generalizations of the discrete log problem are hard in semigroups despite being easy in groups. We relate a shifted version of the discrete log problem in semigroups to the dihedral hidden subgroup problem, and we show that the constructive membership problem with respect to $k \ge 2$ generators in a black-box abelian semigroup of order $N$ requires $\tilde \Theta(N^{\frac{1}{2}-\frac{1}{2k}})$ quantum queries. VL - 8 UR - http://arxiv.org/abs/1310.6238v2 CP - 4 J1 - Journal of Mathematical Cryptology 8 U5 - 10.1515/jmc-2013-0038 ER - TY - JOUR T1 - Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator JF - Physical Review Letters Y1 - 2013 A1 - Philip Richerme A1 - Crystal Senko A1 - Simcha Korenblit A1 - Jacob Smith A1 - Aaron Lee A1 - Rajibul Islam A1 - Wesley C. Campbell A1 - Christopher Monroe AB - We control quantum fluctuations to create the ground state magnetic phases of a classical Ising model with a tunable longitudinal magnetic field using a system of 6 to 10 atomic ion spins. Due to the long-range Ising interactions, the various ground state spin configurations are separated by multiple first-order phase transitions, which in our zero temperature system cannot be driven by thermal fluctuations. We instead use a transverse magnetic field as a quantum catalyst to observe the first steps of the complete fractal devil's staircase, which emerges in the thermodynamic limit and can be mapped to a large number of many-body and energy-optimization problems. VL - 111 UR - http://arxiv.org/abs/1303.6983v2 CP - 10 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.111.100506 ER - TY - JOUR T1 - Quantum Simulation of Spin Models on an Arbitrary Lattice with Trapped Ions JF - New Journal of Physics Y1 - 2012 A1 - Simcha Korenblit A1 - Dvir Kafri A1 - Wess C. Campbell A1 - Rajibul Islam A1 - Emily E. Edwards A1 - Zhe-Xuan Gong A1 - Guin-Dar Lin A1 - Luming Duan A1 - Jungsang Kim A1 - Kihwan Kim A1 - Christopher Monroe AB - A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable. VL - 14 U4 - 095024 UR - http://arxiv.org/abs/1201.0776v1 CP - 9 J1 - New J. Phys. U5 - 10.1088/1367-2630/14/9/095024 ER - TY - JOUR T1 - Quantum information processing using localized ensembles of nuclear spins Y1 - 2004 A1 - J. M. Taylor A1 - G. Giedke A1 - H. Christ A1 - B. Paredes A1 - J. I. Cirac A1 - P. Zoller A1 - M. D. Lukin A1 - A. Imamoglu AB - We describe a technique for quantum information processing based on localized en sembles of nuclear spins. A qubit is identified as the presence or absence of a collective excitation of a mesoscopic ensemble of nuclear spins surrounding a single quantum dot. All single and two-qubit operations can be effected using hyperfine interactions and single-electron spin rotations, hence the proposed scheme avoids gate errors arising from entanglement between spin and orbital degrees of freedom. Ultra-long coherence times of nuclear spins suggest that this scheme could be particularly well suited for applications where long lived memory is essential. UR - http://arxiv.org/abs/cond-mat/0407640v2 ER - TY - JOUR T1 - Controlling a mesoscopic spin environment by quantum bit manipulation JF - Physical Review Letters Y1 - 2003 A1 - J. M. Taylor A1 - A. Imamoglu A1 - M. D. Lukin AB - We present a unified description of cooling and manipulation of a mesoscopic bath of nuclear spins via coupling to a single quantum system of electronic spin (quantum bit). We show that a bath cooled by the quantum bit rapidly saturates. Although the resulting saturated states of the spin bath (``dark states'') generally have low degrees of polarization and purity, their symmetry properties make them a valuable resource for the coherent manipulation of quantum bits. Specifically, we demonstrate that the dark states of nuclear ensembles can be used to coherently control the system-bath interaction and to provide a robust, long-lived quantum memory for qubit states. VL - 91 UR - http://arxiv.org/abs/cond-mat/0308459v1 CP - 24 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.91.246802 ER -