TY - JOUR T1 - Cross-Platform Comparison of Arbitrary Quantum Computations Y1 - 2021 A1 - Daiwei Zhu A1 - Ze-Pei Cian A1 - Crystal Noel A1 - Andrew Risinger A1 - Debopriyo Biswas A1 - Laird Egan A1 - Yingyue Zhu A1 - Alaina M. Green A1 - Cinthia Huerta Alderete A1 - Nhung H. Nguyen A1 - Qingfeng Wang A1 - Andrii Maksymov A1 - Yunseong Nam A1 - Marko Cetina A1 - Norbert M. Linke A1 - Mohammad Hafezi A1 - Christopher Monroe AB -

As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information for a single QC. On the other hand, a comparison between different QCs on the same arbitrary circuit provides a lower-bound for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform fidelities.

UR - https://arxiv.org/abs/2107.11387 ER -