Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor quadratic functions. Here, we explore single-particle scattering in one dimension when the dispersion relation is ϵ(k)=±|d|km, where m≥2 is an integer. We study impurity scattering problems in which a single-particle in a one-dimensional waveguide scatters off of an inhomogeneous, discrete set of sites locally coupled to the waveguide. For a large class of these problems, we rigorously prove that when there are no bright zero-energy eigenstates, the S-matrix evaluated at an energy E→0 converges to a universal limit that is only dependent on m. We also give a generalization of a key index theorem in quantum scattering theory known as Levinson's theorem -- which relates the scattering phases to the number of bound states -- to impurity scattering for these more general dispersion relations.

UR - https://arxiv.org/abs/2103.09830 ER -