TY - JOUR T1 - Exotic photonic molecules via Lennard-Jones-like potentials JF - Phys. Rev. Lett. Y1 - 2020 A1 - Przemyslaw Bienias A1 - Michael Gullans A1 - Marcin Kalinowski A1 - Alexander N. Craddock A1 - Dalia P. Ornelas-Huerta A1 - Steven L. Rolston A1 - J. V. Porto A1 - Alexey V. Gorshkov AB -

Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT). This potential is achieved by tuning Rydberg states to a F{รถ}rster resonance with other Rydberg states. We consider few-body problems in 1D and 2D geometries and show the existence of self-bound clusters ("molecules") of photons. We demonstrate that for a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state. This leads to phenomena without counterparts in conventional systems: For example, three photons in 2D preferentially arrange themselves in a line-configuration rather than in an equilateral-triangle configuration. Our result opens a new avenue for studies of many-body phenomena with strongly interacting photons.

VL - 125 UR - https://arxiv.org/abs/2003.07864 CP - 093601 U5 - https://doi.org/10.1103/PhysRevLett.125.093601 ER -