TY - JOUR T1 - Cryogenic Trapped-Ion System for Large Scale Quantum Simulation Y1 - 2018 A1 - G. Pagano A1 - P. W. Hess A1 - H. B. Kaplan A1 - W. L. Tan A1 - P. Richerme A1 - P. Becker A1 - A. Kyprianidis A1 - J. Zhang A1 - E. Birckelbaw A1 - M. R. Hernandez A1 - Y. Wu A1 - C. Monroe AB -

We present a cryogenic ion trapping system designed for large scale quantum simulation of spin models. Our apparatus is based on a segmented-blade ion trap enclosed in a 4 K cryostat, which enables us to routinely trap over 100 171Yb+ ions in a linear configuration for hours due to a low background gas pressure from differential cryo-pumping. We characterize the cryogenic vacuum by using trapped ion crystals as a pressure gauge, measuring both inelastic and elastic collision rates with the molecular background gas. We demonstrate nearly equidistant ion spacing for chains of up to 44 ions using anharmonic axial potentials. This reliable production and lifetime enhancement of large linear ion chains will enable quantum simulation of spin models that are intractable with classical computer modelling.

UR - https://arxiv.org/abs/1802.03118 ER -