TY - JOUR T1 - Verified Quantum Information Scrambling Y1 - 2018 A1 - Kevin A. Landsman A1 - Caroline Figgatt A1 - Thomas Schuster A1 - Norbert M. Linke A1 - Beni Yoshida A1 - Norman Y. Yao A1 - Christopher Monroe AB -

Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout the entire system. This concept underlies the dynamics of thermalization in closed quantum systems, and more recently has emerged as a powerful tool for characterizing chaos in black holes. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, since scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here, we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous litmus test for scrambling while projecting potential circuit errors into an ancillary observable. We engineer quantum scrambling processes through a tunable 3-qubit unitary operation as part of a 7-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically ∼80%, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.

UR - https://arxiv.org/abs/1806.02807 ER -