TY - JOUR T1 - Scale-Invariant Continuous Entanglement Renormalization of a Chern Insulator JF - Phys. Rev. Lett Y1 - 2019 A1 - Su-Kuan Chu A1 - Guanyu Zhu A1 - James R. Garrison A1 - Zachary Eldredge A1 - Ana Valdés Curiel A1 - Przemyslaw Bienias A1 - I. B. Spielman A1 - Alexey V. Gorshkov AB -

The multi-scale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with finite bond dimension. In this Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a fixed point wavefunction with nonzero Chern number. Additionally, it is well known that reversed MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the size of the system. However, state preparation via MERA typically requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling. 

VL - 122 UR - https://arxiv.org/abs/1807.11486 CP - 120502 U5 - https://doi.org/10.1103/PhysRevLett.122.120502 ER -