TY - JOUR T1 - Multiple scattering dynamics of fermions at an isolated p-wave resonance JF - Nature Communications Y1 - 2016 A1 - Ryan Thomas A1 - Kris O. Roberts A1 - Eite Tiesinga A1 - Andrew C.J. Wade A1 - P. Blair Blakie A1 - Amita B. Deb A1 - Niels Kjærgaard AB -

The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions this requirement strictly prohibits scattering into 90 degree angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90 yield. Above this threshold effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, while the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

VL - 7 U4 - 12069 UR - http://www.nature.com/articles/ncomms12069 U5 - 10.1038/ncomms12069 ER -