TY - JOUR T1 - Fast State Transfer and Entanglement Renormalization Using Long-Range Interactions JF - Physical Review Letters Y1 - 2017 A1 - Zachary Eldredge A1 - Zhe-Xuan Gong A1 - Ali Hamed Moosavian A1 - Michael Foss-Feig A1 - Alexey V. Gorshkov AB -

In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speed-up possible is an open question. In this paper, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with strength bounded by 1/rα. If α<d, the state transfer time is asymptotically independent of L; if α=d, the time is logarithmic in distance L; if d<α<d+1, transfer occurs in time proportional to Lαd; and if αd+1, it occurs in time proportional to L. We then use this protocol to upper bound the time required to create a state specified by a MERA (multiscale entanglement renormalization ansatz) tensor network, and show that, if the linear size of the MERA state is L, then it can be created in time that scales with L identically to state transfer up to multiplicative logarithmic corrections.

VL - 119 U4 - 170503 UR - https://arxiv.org/abs/1612.02442 CP - 17 U5 - 10.1103/PhysRevLett.119.170503 ER -