TY - JOUR T1 - Optimal quantum algorithm for polynomial interpolation JF - 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) Y1 - 2016 A1 - Andrew M. Childs A1 - Wim van Dam A1 - Shih-Han Hung A1 - Igor E. Shparlinski AB -

We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithm's success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability.

VL - 55 U4 - 16:1--16:13 SN - 978-3-95977-013-2 UR - http://arxiv.org/abs/1509.09271 U5 - http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.16 ER -