TY - JOUR T1 - Fast and robust quantum computation with ionic Wigner crystals JF - Physical Review A Y1 - 2011 A1 - J. D. Baltrusch A1 - A. Negretti A1 - J. M. Taylor A1 - T. Calarco AB - We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme. VL - 83 UR - http://arxiv.org/abs/1011.5616v2 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.042319 ER -