TY - JOUR T1 - Exponential algorithmic speedup by quantum walk Y1 - 2002 A1 - Andrew M. Childs A1 - Richard Cleve A1 - Enrico Deotto A1 - Edward Farhi A1 - Sam Gutmann A1 - Daniel A. Spielman AB - We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time. UR - http://arxiv.org/abs/quant-ph/0209131v2 J1 - Proc. 35th ACM Symposium on Theory of Computing (STOC 2003) U5 - 10.1145/780542.780552 ER -