We report the optical imaging of a single atom with nanometer resolution using an adaptive optical alignment technique that is applicable to general optical microscopy. By decomposing the image of a single laser-cooled atom, we identify and correct optical aberrations in the system and realize an atomic position sensitivity of ≈ 0.5 nm/Hz−−−√ with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom, and opens up the possibility of performing out-of-focus 3D particle tracking, imaging of atoms in 3D optical lattices or sensing forces at the yoctonewton (10−24 N) scale.

1 aWong-Campos, J., D.1 aJohnson, K., G.1 aNeyenhuis, Brian1 aMizrahi, J.1 aMonroe, Chris uhttps://www.nature.com/nphoton/journal/v10/n9/full/nphoton.2016.136.html02166nas a2200205 4500008004100000245008500041210006900126260001500195520153900210100001701749700001501766700002101781700002101802700001901823700001901842700001701861700002001878700002401898856003801922 2016 eng d00aMany-body localization in a quantum simulator with programmable random disorder0 aManybody localization in a quantum simulator with programmable r c2016/06/063 aWhen a system thermalizes it loses all local memory of its initial conditions. This is a general feature of open systems and is well described by equilibrium statistical mechanics. Even within a closed (or reversible) quantum system, where unitary time evolution retains all information about its initial state, subsystems can still thermalize using the rest of the system as an effective heat bath. Exceptions to quantum thermalization have been predicted and observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. The prediction of many-body localization (MBL), in which disordered quantum systems can fail to thermalize in spite of strong interactions and high excitation energy, was therefore surprising and has attracted considerable theoretical attention. Here we experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmably random disorder to ten spins initialized far from equilibrium. We observe the essential signatures of MBL: memory retention of the initial state, a Poissonian distribution of energy level spacings, and entanglement growth in the system at long times. Our platform can be scaled to higher numbers of spins, where detailed modeling of MBL becomes impossible due to the complexity of representing such entangled quantum states. Moreover, the high degree of control in our experiment may guide the use of MBL states as potential quantum memories in naturally disordered quantum systems.

1 aSmith, Jacob1 aLee, Aaron1 aRicherme, Philip1 aNeyenhuis, Brian1 aHess, Paul, W.1 aHauke, Philipp1 aHeyl, Markus1 aHuse, David, A.1 aMonroe, Christopher uhttp://arxiv.org/abs/1508.07026v101519nas a2200217 4500008004100000245008300041210006900124260001400193490000800207520087700215100002001092700002101112700002201133700001201155700002101167700002301188700002001211700002101231700001201252856003701264 2012 eng d00aLong-lived dipolar molecules and Feshbach molecules in a 3D optical lattice 0 aLonglived dipolar molecules and Feshbach molecules in a 3D optic c2012/2/230 v1083 a We have realized long-lived ground-state polar molecules in a 3D optical lattice, with a lifetime of up to 25 s, which is limited only by off-resonant scattering of the trapping light. Starting from a 2D optical lattice, we observe that the lifetime increases dramatically as a small lattice potential is added along the tube-shaped lattice traps. The 3D optical lattice also dramatically increases the lifetime for weakly bound Feshbach molecules. For a pure gas of Feshbach molecules, we observe a lifetime of >20 s in a 3D optical lattice; this represents a 100-fold improvement over previous results. This lifetime is also limited by off-resonant scattering, the rate of which is related to the size of the Feshbach molecule. Individually trapped Feshbach molecules in the 3D lattice can be converted to pairs of K and Rb atoms and back with nearly 100% efficiency. 1 aChotia, Amodsen1 aNeyenhuis, Brian1 aMoses, Steven, A.1 aYan, Bo1 aCovey, Jacob, P.1 aFoss-Feig, Michael1 aRey, Ana, Maria1 aJin, Deborah, S.1 aYe, Jun uhttp://arxiv.org/abs/1110.4420v1