We investigate the connection between the complexity of nonlocal games and the arithmetical hierarchy, a classification of languages according to the complexity of arithmetical formulas defining them. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that deciding whether the (finite-dimensional) quantum value of a nonlocal game is 1 or at most 12 is complete for the class Σ1 (i.e., RE). A result of Slofstra implies that deciding whether the commuting operator value of a nonlocal game is equal to 1 is complete for the class Π1 (i.e., coRE). We prove that deciding whether the quantum value of a two-player nonlocal game is exactly equal to 1 is complete for Π2; this class is in the second level of the arithmetical hierarchy and corresponds to formulas of the form "∀x∃yϕ(x,y)". This shows that exactly computing the quantum value is strictly harder than approximating it, and also strictly harder than computing the commuting operator value (either exactly or approximately). We explain how results about the complexity of nonlocal games all follow in a unified manner from a technique known as compression. At the core of our Π2-completeness result is a new "gapless" compression theorem that holds for both quantum and commuting operator strategies. Our compression theorem yields as a byproduct an alternative proof of Slofstra's result that the set of quantum correlations is not closed. We also show how a "gap-preserving" compression theorem for commuting operator strategies would imply that approximating the commuting operator value is complete for Π1.

1 aMousavi, Hamoon1 aNezhadi, Seyed, Sajjad1 aYuen, Henry uhttps://arxiv.org/abs/2110.0465101359nas a2200157 4500008004100000245003200041210003200073260001400105520093200119100002001051700002001071700002701091700002201118700002401140856003701164 2021 eng d00aSynchronous Values of Games0 aSynchronous Values of Games c9/29/20213 aWe study synchronous values of games, especially synchronous games. It is known that a synchronous game has a perfect strategy if and only if it has a perfect synchronous strategy. However, we give examples of synchronous games, in particular graph colouring games, with synchronous value that is strictly smaller than their ordinary value. Thus, the optimal strategy for a synchronous game need not be synchronous. We derive a formula for the synchronous value of an XOR game as an optimization problem over a spectrahedron involving a matrix related to the cost matrix. We give an example of a game such that the synchronous value of repeated products of the game is strictly increasing. We show that the synchronous quantum bias of the XOR of two XOR games is not multiplicative. Finally, we derive geometric and algebraic conditions that a set of projections that yields the synchronous value of a game must satisfy.

1 aHelton, William1 aMousavi, Hamoon1 aNezhadi, Seyed, Sajjad1 aPaulsen, Vern, I.1 aRussell, Travis, B. uhttps://arxiv.org/abs/2109.14741