As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information for a single QC. On the other hand, a comparison between different QCs on the same arbitrary circuit provides a lower-bound for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform fidelities.

1 aZhu, Daiwei1 aCian, Ze-Pei1 aNoel, Crystal1 aRisinger, Andrew1 aBiswas, Debopriyo1 aEgan, Laird1 aZhu, Yingyue1 aGreen, Alaina, M.1 aAlderete, Cinthia, Huerta1 aNguyen, Nhung, H.1 aWang, Qingfeng1 aMaksymov, Andrii1 aNam, Yunseong1 aCetina, Marko1 aLinke, Norbert, M.1 aHafezi, Mohammad1 aMonroe, Christopher uhttps://arxiv.org/abs/2107.1138702349nas a2200313 4500008004100000245007100041210006900112260001400181520145100195100001601646700003401662700001701696700001801713700001301731700001801744700001901762700002101781700001401802700002201816700001601838700002501854700001801879700001901897700002001916700002001936700001801956700002401974856003701998 2021 eng d00aInteractive Protocols for Classically-Verifiable Quantum Advantage0 aInteractive Protocols for ClassicallyVerifiable Quantum Advantag c12/9/20213 aAchieving quantum computational advantage requires solving a classically intractable problem on a quantum device. Natural proposals rely upon the intrinsic hardness of classically simulating quantum mechanics; however, verifying the output is itself classically intractable. On the other hand, certain quantum algorithms (e.g. prime factorization via Shor's algorithm) are efficiently verifiable, but require more resources than what is available on near-term devices. One way to bridge the gap between verifiability and implementation is to use "interactions" between a prover and a verifier. By leveraging cryptographic functions, such protocols enable the classical verifier to enforce consistency in a quantum prover's responses across multiple rounds of interaction. In this work, we demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer. We execute two complementary protocols -- one based upon the learning with errors problem and another where the cryptographic construction implements a computational Bell test. To perform multiple rounds of interaction, we implement mid-circuit measurements on a subset of trapped ion qubits, with subsequent coherent evolution. For both protocols, the performance exceeds the asymptotic bound for classical behavior; maintaining this fidelity at scale would conclusively demonstrate verifiable quantum advantage.

1 aZhu, Daiwei1 aKahanamoku-Meyer, Gregory, D.1 aLewis, Laura1 aNoel, Crystal1 aKatz, Or1 aHarraz, Bahaa1 aWang, Qingfeng1 aRisinger, Andrew1 aFeng, Lei1 aBiswas, Debopriyo1 aEgan, Laird1 aGheorghiu, Alexandru1 aNam, Yunseong1 aVidick, Thomas1 aVazirani, Umesh1 aYao, Norman, Y.1 aCetina, Marko1 aMonroe, Christopher uhttps://arxiv.org/abs/2112.0515601625nas a2200229 4500008004100000245008800041210006900129260001400198520092400212100001801136700002101154700001601175700002101191700001601212700002201228700001801250700002501268700002101293700002001314700002401334856003701358 2021 eng d00aObservation of measurement-induced quantum phases in a trapped-ion quantum computer0 aObservation of measurementinduced quantum phases in a trappedion c6/10/20213 aMany-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.

1 aNoel, Crystal1 aNiroula, Pradeep1 aZhu, Daiwei1 aRisinger, Andrew1 aEgan, Laird1 aBiswas, Debopriyo1 aCetina, Marko1 aGorshkov, Alexey, V.1 aGullans, Michael1 aHuse, David, A.1 aMonroe, Christopher uhttps://arxiv.org/abs/2106.0588102128nas a2200229 4500008004100000245006400041210006200105260001400167520146400181100001601645700002301661700001801684700002101702700001601723700002201739700002001761700001501781700002301796700001801819700002401837856003701861 2020 eng d00aFault-Tolerant Operation of a Quantum Error-Correction Code0 aFaultTolerant Operation of a Quantum ErrorCorrection Code c9/24/20203 aQuantum error correction protects fragile quantum information by encoding it in a larger quantum system whose extra degrees of freedom enable the detection and correction of errors. An encoded logical qubit thus carries increased complexity compared to a bare physical qubit. Fault-tolerant protocols contain the spread of errors and are essential for realizing error suppression with an error-corrected logical qubit. Here we experimentally demonstrate fault-tolerant preparation, rotation, error syndrome extraction, and measurement on a logical qubit encoded in the 9-qubit Bacon-Shor code. For the logical qubit, we measure an average fault-tolerant preparation and measurement error of 0.6% and a transversal Clifford gate with an error of 0.3% after error correction. The result is an encoded logical qubit whose logical fidelity exceeds the fidelity of the entangling operations used to create it. We compare these operations with non-fault-tolerant protocols capable of generating arbitrary logical states, and observe the expected increase in error. We directly measure the four Bacon-Shor stabilizer generators and are able to detect single qubit Pauli errors. These results show that fault-tolerant quantum systems are currently capable of logical primitives with error rates lower than their constituent parts. With the future addition of intermediate measurements, the full power of scalable quantum error-correction can be achieved.

1 aEgan, Laird1 aDebroy, Dripto, M.1 aNoel, Crystal1 aRisinger, Andrew1 aZhu, Daiwei1 aBiswas, Debopriyo1 aNewman, Michael1 aLi, Muyuan1 aBrown, Kenneth, R.1 aCetina, Marko1 aMonroe, Christopher uhttps://arxiv.org/abs/2009.11482